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Abstract

Dual-earner households face a colocation problem: They need to find two jobs in
one location. We develop a spatial directed search model that captures the unique
friction that characterize the job search by dual-earner households. We derive general
conditions under which this “colocation friction” is binding and quantify its consequences
for the U.S. labor market. Estimated at the commuting zone level, the model implies
that the colocation friction disproportionately affects women, reducing their short-term
earnings gains from migration by 76%. The colocation friction further discourages
migration, especially among “power couples”, preempting relocation to more productive
and higher-amenity locations in the long-run. Taken together, we estimate that the
colocation friction incurs a lifetime utility loss equivalent to a 1.61% decrease in lifetime
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1 Introduction

A substantial share of U.S. workers are part of a dual-earner household. Compared to single-
earner households, dual-earner households face a unique constraint on their job search and
labor mobility: They need to find two jobs in one location. While largely ignored by previous
literature, the constraint is all but certain to shape the labor market experience of workers in
dual-earner households (Mincer 1978; Guler, Guvenen & Violante 2012).

In this paper, we develop a spatial search model of the labor market for dual-earner
households, that we use to formalize, characterize, and quantify the unique frictions faced by
dual-earner households in their job search. Building on Menzio & Shi (2010, 2011), search
is directed, allowing household members to coordinate their search effort towards the same
locations. Yet, due to the usual labor market frictions, not every application generates
a match, and matching succeeds independently across spouses. This exposes dual-earner
households to a risk of job offers being spatially mismatched across spouses, which we term
the “colocation friction”, and which reduces the odds of obtaining a joint job offer within the
same location despite coordinating search efforts. This colocation friction is the key friction
distinguishing the job search of dual-earner households from the one by single earners.

The colocation friction manifests itself in several ways: First, migration is more likely
to create a trailing spouse with possibly long-lasting effects on their career. Second, as a
consequence, migration may become less attractive, reducing labor mobility and the long-run
location choice of households. Third, by influencing labor mobility, workers’ location choice,
and their labor market trajectories upon migration, the colocation friction may have long-run
effects on workers’ productivity, employment, amenity value and welfare.

To measure the prevalence and consequences of the colocation friction, we develop a
fictitious benchmark where spouses are counterfactually allowed to correlate their matching
success, effectively shutting down the colocation friction, while otherwise being exposed to
the same search frictions as in the baseline economy.1 Equipped with the benchmark, we first
apply it to assess under which conditions the colocation friction is binding. We show that
it does if and only if a household’s lifetime utility is convex in the number of simultaneous
job offers in a given location. As we demonstrate, this is more likely for households with two
employed spouses, when job ladders are steep, when migration costs are large, and when the
search elasticity across locations is small. Conversely, the colocation friction is likely to be
slack for households with two non-employed spouses and, when childcare costs are large, for
households with children.

We quantify the colocation friction in a version of our model where locations correspond to
1While we only utilize the benchmark as a measuring device, it can be implemented as part of a decentralized

equilibrium subject to search frictions by allowing workers with identical job qualifications to trade job offers.
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U.S. commuting zones and households are characterized by each spouse’s occupation, human
capital, and whether there are children in the household. Human capital accumulates through
learning-by-doing and is estimated to match the empirical steepness of job ladders as in, e.g.,
Jung & Kuhn (2019) and Jarosch (2022). Commuting zones (CZ) are distinguished by their
amenities, their cost of living, and CZ × gender × occupation specific productivities. We
calibrate these differences directly from the data using a combination of existing data and
web-scraped data that we use to assemble a novel index of amenities at the CZ-level. We
then estimate the model to match, at the occupation-level, both labor market and migration
flows as well as the cross-sectional density of households over commuting zones.

For context, we first use the calibrated model to characterize households’ migration
experience in the U.S. labor market. We find that women are about three times as likely as
men to become a trailing spouse upon migration. As a consequence of this imbalance, mens’
earnings gains from migration substantially exceed those of women. Reflecting this imbalance,
conversely, the colocation friction disproportionately affects women, reducing their short-term
earnings gain from migration by 76% and their long-term earnings-gain by 22%.

Next, we find that the colocation friction substantially discourages migration: If it weren’t
for the colocation friction, average (work-based) migration rates would rise by 50% in the
short-term and by about 20% in the long-term. The impact is especially stark on “power
couples” with two employed spouses and above-average human capital. Despite facing the
highest potential gains from migration, power couples are most discouraged from migration
due to the colocation friction.

In terms of location choice, the colocation friction preempts households to move from the
Rocky Mountains and Midwest to the Pacific, Northeast, and the South. While raising the
cost of living, these relocations would significantly raise households’ earnings potential and
their utility flow from amenities.

Taken together, the colocation friction reduces women’s economy-wide average earnings
by 2% and men’s economy-wide average earnings 0.8%. In addition, by preempting migration
to higher-amenity locations, it also causes households to forgo amenity values equivalent to
an additional reduction in average earnings by 0.8%. In total, we estimate that the colocation
friction incurs a lifetime utility loss equivalent to a decrease in lifetime earnings ranging from
0.4% to 2.7%, depending on the occupations of the households.

Related literature The contribution of this paper is threefold. First, we develop a novel
spatial search model for studying dual-earner households’ job search and migration behavior.
Our model builds on the directed search models by Menzio & Shi (2010, 2011), Menzio,
Telyukova & Visschers (2016), Schaal (2017), and Herkenhoff, Phillips & Cohen-Cole (2022),
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which we extend to dual-earner search and to add a spatial dimension. For modeling dual-
earner search, adopting a directed search rather than a random search approach is crucial as
it reflects that spouses may coordinate their job search towards the same locations. Moreover,
we benefit computationally from block recursivity (Menzio & Shi 2010; Wright, Kircher,
Julien & Guerrieri 2021), which makes our quantitative model tractable despite a large state
space and action space.

Second, we contribute to the literature on labor misallocation. Previous studies have
explored various sources of misallocation on labor markets, including search frictions (Hosios
1990) and monopsony power (Galenianos, Kircher & Virág 2011; Rabinovich & Wolthoff
2022), spatial frictions (Şahin, Song, Topa & Violante 2014; Findeisen, Lee, Porzio & Dauth
2021), and information frictions (Jovanovic 1979, 1984). Our paper contributes a novel aspect
to this literature by exploring the unique frictions characterizing dual-earner job search across
multiple locations and by quantifying their consequences for the allocation of workers to jobs.

Third, we add to a small literature that has analyzed dual-earner households’ labor market
and migration decisions.2 This literature goes back to Mincer (1978), and has explored how
migration decisions are impacted by household composition, as well as gender-specific labor
market opportunities (Costa & Kahn 2000; Gemici 2007), and how policy affects dual-earner
households’ migration decisions (Venator 2023). Relative to this literature our paper is the
first to model dual-earner job search as directed, which arguably is crucial in our context as
it allows spouses to coordinate their search towards specific locations. Unlike random search
models, our framework thus accounts for coordination in search efforts, which allows us to
formalize and quantify the fundamental friction arising from a spatial mismatch in matching
successes. Leveraging our framework, we provide general results on when the risk of spatially
mismatched job offers constrains dual-earner job search, and quantify the implications for the
U.S. labor market.

Layout The paper proceeds as follows. Section 2 introduces the general framework.
Section 3 characterizes the colocation friction, develops our measuring approach, and presents
a simple example to illustrate the economics behind the friction. Section 4 introduces and
calibrates the quantitative model. Section 5 studies the consequences of the colocation friction
for employment, earnings and welfare. Section 6 concludes.

2This literature is at the intersection of a somewhat larger literature studying dual-earner job search (e.g,
Dey & Flinn 2008; Guler et al. 2012; Pilossoph & Wee 2021; Flabbi & Mabli 2018) and the literature on domestic
migration, which typically focuses on single-earners (e.g., Kennan & Walker 2011; Kaplan & Schulhofer-Wohl
2017; Piyapromdee 2020).
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2 General Framework

We develop a spatial search model of the labor market for dual-earner households. Search
is directed, allowing household members to coordinate their search effort towards the same
locations. Yet, due to labor market frictions, matching success is random, reducing the odds
that during any given time frame both spouses successfully match within the same location.

2.1 Environment

Preferences and technology Time is continuous and extends forever. There is a finite
set of locations, indexed by r ∈ R. The economy is populated by an endogenous measure of
one-vacancy firms and a unit measure of households. Each household consists of two adult
workers or “spouses”, indexed by i ∈ {1, 2}. While later, in our quantification, i maps into
workers’ “gender”, there is no need for now to make assumptions about the gender-composition
within households. Firms and households are risk neutral and share the same effective discount
rate ρ.

Following the literature, we assume that search and matching is privately efficient. In order
to characterize labor and migration flows, it then suffices to specify the sum of a household’s
instantaneous utility flow and the labor product of its employed members. Let

u(e, s, r) = ū(e, s, r) +
∑

i∈{1,2}
zi(s, r) · 1ei=1 (1)

denote this joint value flow. Here, e ≡ (e1, e2) ∈ {0, 1}2 is the employment status of the
household’s adult members, ū is their utility flow net of earnings, zi is the labor product
of spouse i, r ∈ R is the household’s current location, and s ∈ S1 × · · · × Sns is a generic
“catch-all” state that captures other persistent and transitory characteristics of the household.
For example, in our quantification, s includes the occupation of both spouses, their human
capital, and whether or not they have children. We assume that s has finite support Sk in all
its dimensions k ∈ {1, . . . , ns}.

Other than through search and migration, a household’s type (e, s, r) evolves stochastically
with Poisson arrival rates given by π(e′, s′, r′|e, s, r). In our quantification, we specify π to
expose households to exogenous job separations, human capital dynamics, location preference
shocks, and the arrival and departure of children.

Labor markets and migration The labor market is organized in a continuum of submar-
kets indexed by the location of jobs q ∈ R, the worker type (i, s), and the firm’s share y of
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the joint value of the match.3 Workers direct their search toward these submarkets, choosing
both a firm share y and a search effort κi,q for each location q. Specifically, each spouse
i ∈ {1, 2} is endowed with a type-specific search budget κ̄i(e, s), which they can allocate to
search across submarkets in different locations subject to

∑
q∈R

κ
1+η

η

i,q


η

1+η

≤ κ̄i(e, s). (2)

Here, η ≥ 0 is the elasticity of substitution between locations. In the limit where η → ∞,
workers allocate their entire search budget to the single location with the highest gains from
search as is usually the case in directed search models. At the other extreme where η = 0,
diversifying search is costless and workers allocate κ̄i(e, s) units of search effort to each
location with positive search gains as in the literature on multiple job applications (Albrecht,
Gautier & Vroman 2006; Kircher 2009; Galenianos & Kircher 2009).

Vacancies are created by an infinite supply of potential firms, which can open vacancies in
any submarket at flow costs c. Vacancies and workers in a given submarket come together
through a frictional matching process. In particular, a worker that allocates search effort κi,q
to submarket ψ ≡ (q, y, i, s) meets a vacancy at rate κi,qλ(θψ), where θψ is the ratio between
vacancies posted and the measure of workers’ effort in submarket ψ. Similarly, a vacancy
posted in submarket ψ meets a worker at rate λ(θψ)/θψ. As usual, we assume that the contact
function λ is twice differentiable, strictly increasing and concave, with λ(0) = λ′(∞) = 0 and
λ′(0) = ∞.

When a firm and a worker meet, the firm offers a wage contract with present discounted
value equal to the match value net of the firm’s share y and hires the worker. Following
Menzio & Shi (2010, 2011), we assume that the underlying contract space is complete. In
particular, endogenous separations and on-the-job search maximize the joint value of the
household and all its current employers.

New jobs entail migration whenever the new job is in a location q that differs from a
household’s current location r. In this case, the spouse without the job offer quits their job
and the household moves to q. Migration entails a utility cost χ(q|s, r), normalized so that
χ(r|·, r) = 0.

3Indexing submarkets by firms’ share y is equivalent to indexing by workers’ lifetime utility along with
household types (e, s, r). It is worth noting that while indexing by y yields broader submarkets, it is isomorphic
to finer partitions as long as vacancies are created at constant returns to scale (as we indeed impose below).
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2.2 Equilibrium Characterization

Vacancy creation By free entry, the value of creating a vacancy must be zero in every
submarket. From firms’ zero profit condition,

cθψ = λ(θψ) max{0, y}, (3)

this pins down the market tightness θψ as a function of y.

Search and separation policies Next, consider the search, migration and separation
policies of workers and their employers. Private efficiency implies that the policies maximize
the joint value of a household and its current employers, given by

ρV (e, s, r) = u(e, s, r) +
∑

e′,s′,r′
π(e′, s′, r′|e, s, r)

(
V (e′, s′, r′) − V (e, s, r)

)
+ max

{κi,q ,yi,q}

∑
i,q

κi,qλ(θi,q)
(
V (enew,i, s, q) − yi,q − χ(q|s, r) − V (e, s, r)

)
+ lim

ϵ→∞
ϵ
∑
i

max
{
0, V (esep,i, s, q) − V (e, s, q)

}
. (4)

The joint flow value is comprised of four terms: (i) the instantaneous value flow u as defined
in (1); (ii) the value change induced by exogenous shocks to the household type (e, s, r);
(iii) the value change induced by either spouse finding a new job, which is maximized subject
to the θ–y frontier posed by (3); and (iv) the option for either spouse to quit their job. Here,
enew,i is a household’s employment status after spouse i accepts a new job, defined by enew,i

i = 1
and enew,i

−i = e−i · 1q=r where “−i” denotes the spouse without job offer. Similarly, esep,i is the
employment status after spouse i quits their job, defined by esep,i

i = 0 and esep,i
−i = e−i.

It remains to characterize the optimal choice of {κi,q, yi,q} in households’ job search.
Consider first the value split between households and firms. From (3), the market tightness is
increasing in firms’ share y, creating a trade-off for workers to search in submarkets with higher
job finding rates versus searching in submarkets with higher household shares. Maximizing
the third term in (4) subject to the θ–y frontier defined by (3), the optimal market tightness
is given by

θi,q(e, s, r) = λ′−1
(

c

V (enew,i, s, q) − χ(q|s, r) − V (e, s, r)

)
, (5)

which in turn pins down the matching rate per unit of search effort, λ(θψ).
Finally, consider the allocation of search effort across locations, {κi,q}. Let Λi,q denote
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spouse i’s expected gain per unit of search effort allocated to location q,

Λi,q(e, s, r) ≡ λ(θ∗
i,q)
(
V (enew,i, s, q) − χ(q|r) − V (e, s, r)

)
− θ∗

i,qc,

with θ∗
i,q ≡ θi,q(e, s, r) denoting the optimal market tightness in (5). Maximizing the joint

value (4) subject to the search budget (2), then yields

κi,q(e, s, r) = Λi,q(e, s, r)η
(∑

v

Λi,v(e, s, r)1+η
)− η

1+η

κ̄i(e, s). (6)

Together with (5) this pins down job finding and migration rates,

fi,q(e, s, r) ≡ κi,q(e, s, r) · λ(θi,q(e, s, r)), (7)

completing the characterization of search policies.

Steady state equilibrium In this economy, all policy rules are functions of only the
idiosyncratic household type (e, s, r). An equilibrium is a collection of maps from (e, s, r)
to search and separation policies satisfying (4)–(6) along with a value split satisfying (3).
Throughout we focus on the case where the cross-sectional distribution over (e, s, r) is at
steady state.4

3 The Colocation Friction

Conditional on search policies, matching in the baseline economy is statistically independent
across spouses, reducing the odds of obtaining a joint job offer in any given location below the
individual matching rates. While originating from search frictions, which lead to randomness
in the matching process even for single earners, the risk of job offers being spatially mismatched
across spouses is unique to dual-earner households. We refer to this unique risk as “colocation
friction”. As hypothesized by Mincer (1978), the friction may harm households in two
ways. First, generating trailing spouses, it lowers the employment and earnings of migrating
households. Second, as a consequence, it may also deter migration in the first place.

To evaluate this hypothesis, we introduce a fictitious benchmark where spouses are
counterfactually allowed to correlate their individual matching success. In minimizing spatial
mismatch across job offers, it effectively shuts down the colocation friction. Otherwise, the
benchmark exposes households to exactly the same search frictions as in the baseline economy.

4The cross-sectional distribution is characterized by a standard Kolmogorov forward equation, detailed in
Appendix A.2.
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Comparing the job search and migration choices between the benchmark and baseline economy,
we then characterize the precise conditions under which the colocation friction is binding and,
if it is, what its consequences are for employment and earning trajectories.

3.1 Correlated Matching Benchmark

Our benchmark is a replica of the baseline economy in Section 2 with the twist that households
may choose to correlate their matching success within locations.

Formally, suppose two spouses allocate search efforts {κi,q}i=1,2 towards finding jobs in
location q and submarkets with market tightness {θi,q}i=1,2. Let fi,q = κi,qλ(θi,q) denote their
individual job finding rates. The correlated matching benchmark is then characterized by a
choice of correlated matching rates {ωq}q∈R with

0 ≤ ωq ≤ min
i∈{1,2}

{fi,q} for all q ∈ R. (8)

Given their choice of {ωq}, both spouses obtain a joint job offer in location q at rate ωq, and
obtain individual offers at the residual rates fi,q − ωq. If they obtain a joint job offer, both
spouses move to employment, e = (1, 1), independently of the location of their new jobs.

We note that the benchmark does not change the primitives of the search technology. That
is, workers face the same constraint (2) on their allocation of search effort {κi,q}, firms face
the same cost of vacancy creation c, and matching is subject to the same frictional matching
function λ. When ωq = 0 for all q, the benchmark yields search and migration policies that
are identical to the baseline economy.

3.2 When Is the Colocation Friction Binding?

We say that for a household of type (e, s, r) the colocation friction is binding while searching
for jobs in location q if and only if they would choose to correlate their matching success if
given the choice. That is, provided with optimal correlation policies {ωq} from the fictitious
benchmark, we identify the friction to be binding precisely when ωq(e, s, r) > 0. The following
proposition characterizes when this is the case.

Proposition 1. Fix a joint value function V . Let

∆Vi,q(e, s, r) = V (enew,i, s, q) − χ(q|s, r) − V (e, s, r)

denote the gains from an individual match by spouse i. Similarly, let

∆V corr
q (e, s, r) = V (ecorr, s, q) − χ(q|s, r) − V (e, s, r)
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0 1 2

Number of job offers

V (e; s; r)

1
2

P
i

ˆ
V (enew;i ; s; q)− ffl(q|s; r)

˜

V (ecorr; s; q)− ffl(q|s; r)
colocation friction is slack
colocation friction binds

Figure 1: Illustration of condition (9). The colocation friction binds if and only if, averaged across spouses,
V − χ is convex in the number of simultaneous job offers as in the dashed purple graph, and is slack if V − χ
is concave as in the solid turquoise graph.

denote the gains from a correlated match, where ecorr = (1, 1). Then correlated matching is
beneficial if and only if

∆V corr
q (e, s, r) ≥

∑
i∈{1,2}

∆Vi,q(e, s, r). (9)

If condition (9) holds, the correlated matching rate is optimally set to its upper bound,
ωq = mini∈{1,2} {fi,q}. Otherwise, it is optimally set to its lower bound, ωq = 0.

The formal proof is in Appendix A.1. Intuitively, as we illustrate in Figure 1, condition (9)
assesses the curvature of V − χ in the number of simultaneous job offers in a given location q.
If V − χ is convex in the number of simultaneous job offers, then the value gain of a joint
offer exceeds the average gains of the individual offers and the colocation friction is binding.
Conversely, if V − χ is concave, the household is better off hedging its bets by generating
statistically independent offers and the colocation friction is slack.

It is worth noting that Proposition 1 applies to any value function V . In what follows
we distinguish two types of application. First, we study for whom the colocation friction is
binding in the baseline economy by examining condition (9) for the baseline value function.
Second, we quantify the consequences of the colocation friction for the U.S. labor market by
counterfactually relaxing it, which involves computing a counterfactual value function for the
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benchmark economy.

3.3 Simple Example

Before quantifying our framework, we briefly explore a simple example to illustrate the
economic forces that determine the curvature of V . Consider a household with initial type
(e0, s0, r0). There are no exogenous shocks, π(·|·) = 0, and both spouses and all locations
q ̸= r0 are symmetric. Specifically, we have κ̄i(e, s) = κ̄, χ(q|s, r) = χ, and

u(e, s, r) =

u0 r = r0

ue1+e2 r ̸= r0,

with u0 + ρχ ≤ u1 ≤ u2. Finally, we normalize λ(∞) = 1 and simplify by considering the
limit where the matching function is inelastic in vacancies, d log λ/d log θ → 0.

The example admits a simple recursive solution where V (e, s, r) ∈ {V0, V1, V2}. Specifically,
if r ̸= r0 and both spouses are employed, we have ρV2 = u2. If r ̸= r0 and only one spouse is
employed, we have ρV1 = u1 + κ̄ (V2 − V1). Finally, the initial value at r = r0 is given by

ρV0 = u0 + 2κ̄N
1

1+η (V1 − χ− V0) ,

where N is the number of locations q ̸= r0.

Economic forces behind the colocation friction Evaluating condition (9) for the simple
example, the colocation friction binds if and only if

u0 + Ω(N
1

1+η )
2 + u2 − ρχ

2 ≥ u1 − ρχ (10)

with
Ω(x) = 2κ̄

(
x− 1
ρ+ 2κ̄x

)(
u1 − u0 − ρχ+ κ̄

ρ+ κ̄
(u2 − u1)

)
.

The condition reveals several distinct factors affecting the curvature of V − χ, illustrated
in Figure 2. First, consider the case where there are no migration costs, χ = 0, and search
effort is infinitely elastic across locations, η → ∞. In this case, condition (10) simplifies to
(u0 + u2)/2 ≥ u1 so the curvature of V −χ in the number of simultaneous job offers is entirely
determined by the curvature of u.

In particular, given u1 and u2, V is more convex for larger u0, reflecting that the colocation
friction is more likely to bind for households with a high initial value flow such as when both
spouses are employed (illustrated in Panel a of Figure 2). Conversely, the colocation friction is
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(a) Both employed (b) Both nonemployed (c) With children

0 1 2

(d) Unemployment scar

0 1 2

(e) Migration costs

0 1 2

(f) Option value of waiting

Number of job offers

Figure 2: Illustration how distinct economic forces affect the curvature of V − χ. The colocation friction is
slack in the cases depicted in panels (b) and (d), and binds in the other cases.

more likely to be slack for households with a low initial value flow such as when both spouses
are non-employed (Panel b).

Similarly, given u0 and u2, V is more convex the smaller u1 (Panel d). Intuitively, this
captures, in reduced form, economies where falling off the job ladder comes with high costs;
e.g., due to human capital depreciation (e.g., Jung & Kuhn 2019), deteriorated bargaining
positions (e.g., Cahuc, Postel-Vinay & Robin 2006; Lise & Robin 2017), or slippery bottom
job rungs (Jarosch 2022). All of these mechanism increase the cost of becoming a trailing
spouse, making it more likely that the colocation friction binds. Conversely, factors reducing
the value flow of dual employment u2, such as having children when childcare costs are large,
reduce the convexity of V and make it less likely that the colocation friction binds (Panel c).

Next, consider the case where migration costs are strictly positive, χ > 0. As illustrated
in Panel (e), this trivially introduces convexity in the search gains, making it more likely that
the colocation friction binds. Intuitively, this is because migration costs accrue regardless of
whether the household has one or two job offers at hand, which raises the relative returns of
having two job offers.

Finally, consider the case where the search elasticity across locations η is finite (Panel f). In
this case, there is an option value of delaying migration reflected in Ω(N

1
1+η ) > 0. Intuitively,

with η < ∞, there are efficiency gains from broadening search to multiple locations. After
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migrating, these efficiency gains are lost when the trailing spouse narrows their search to the
location of the leading spouse.5 Again, this introduces convexity and makes it more likely
that the colocation friction binds.

4 Quantitative Model

We now introduce the quantitative model and calibrate it to the U.S. labor market. The
quantitative model is a special case of the general framework in Section 2, with locations
corresponding to U.S. commuting zones and households being differentiated by several
characteristics beyond their employment status and residence.

4.1 Setup

Household heterogeneity We quantify our model for dual-earner households whose adult
members are composed of one woman, indexed by i = f , and one man, indexed by i = m.
Households are differentiated by a vector s = (of , om, hf , hm, k), which along with households’
employment status and their location defines their type (e, s, r). Specifically, each spouse i
is characterized by an immutable occupation, oi, and a time-varying human capital level,
hi ∈ {h, h}. In addition, we differentiate households with and without children, k ∈ {0, 1}.

Shocks Other than through search and migration, household types (e, s, r) evolve stochas-
tically through several independent shocks. For reasons that will become apparent below, we
allow the arrival rates to vary across “occupation pairs”, o ≡ (of , om), which constitute the
immutable portion of the household type.

First, jobs are destroyed at an exogenous, gender-specific rate δi(o). Second, children
arrive in and exit from households at rates rates πk↑(o) and πk↓(o). Third, human capital
appreciates or depreciates as a function of a workers’ current employment status: Employed
workers’ human capital appreciates to hi = h at rate πh↑(o), while nonemployed workers’
human capital depreciates to hi = h at rate πh↓(o). Finally, households are exposed to
location preference shocks (detailed below) that induce them to relocate from commuting
zone r to q at rate πq|r(o).

5While it is feasible to continue searching for jobs at multiple locations after migrating, this entails
additional search and migration costs, which may or may not deter further migration. In either case, because
search and migration costs are sunk, there is a positive option value of delaying migration if η is finite.
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Preferences and technology The instantaneous utility and labor product is given by

u(e, s, r) =
∑

i∈{f,m}

{
hizi(oi, r) · 1ei=1 + bzi(oi, r) · 1ei=0

}
︸ ︷︷ ︸

labor product + home production

+ a(k, r) − p(r)︸ ︷︷ ︸
amenities − rent

− ξ(r) · 1k=e1=e2=1.︸ ︷︷ ︸
child care cost

Here, zi(oi, r) is a gender-, occupation- and commuting-zone-specific productivity that scales
the labor and home products, hizi(oi, r) and bzi(oi, r). The value of living in commuting
zone r is further determined by the value of its amenities a(k, r) which differs by child status k,
its cost of living p(r), and its childcare costs ξ(r). The latter accrue only if a household has
children and both spouses are employed.

4.2 Calibration

We calibrate the model using household data from the American Community Survey (ACS) and
the Current Population Survey (CPS), which we combine with geolocation data, commuting
zone data from the Opportunity Atlas (Chetty, Friedman, Hendren, Jones & Porter 2018) and
our own web-scraped data that inform the geography of the U.S. labor market. Appendix B.1
describes the data sources in detail.

Geography We consider all commuting zones (CZ) in the 48 contiguous states, excluding
rural Illinois, Florida, and a few other isolated commuting zones for which we lack the data
to construct our amenity measure.

For computational efficiency, we merge commuting zones that are close geographically and
in terms of all observational characteristics. We describe the details of our recursive merging
algorithm in Appendix B.4. Starting from 690 commuting zones with non-missing data, we
obtain a final data set of 517 commuting zones post-merge.

Location preference shocks We design the location preference shocks, summarized by
their arrival rates πq|r(o), to match the cross-sectional distribution of occupation pairs o over
commuting zones. To do so in a computationally feasible way, we assume that location shocks
induce a lump-sum utility shift,

τ(e, s, r, q) = −
(
V (e, s, q) − χ(q|s, r) − V (e, s, r)

)
,

that makes an household exactly indifferent to migrate from q to r.6 With this design,
households’ value function and search policies, characterized by (4), are independent of

6To avoid indirect effects on the employment distribution, we assume that location shocks to not alter the
employment status e.
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Table 1: Frequency distribution over household occupation pairs

om

of 1 2 3 4 5 6 total

1 .32 .06 .03 .02 .02 .10 .55
2 .11 .04 .02 .01 .01 .09 .28
3 .04 .02 .03 .01 .01 .06 .17

total .47 .12 .08 .04 .04 .25 1.00

Notes.–Frequencies are computed among dual-earner households in the ACS where of is the woman’s
occupation and om is the man’s. Occupation codes follow the classification by Autor & Dorn (2013):
(1) management/professional/technical/financial sales/public security, (2) administrative support and retail
sales, (3) low-skill services, (4) precision production and crafts, (5) machine operators, assemblers and
inspectors, (6) transportation/construction/mechanics/mining/agricultural occupations.

the distribution of location shocks {πq|r(o)}. For a given model parameterization, we can
thus solve for V and the endogenous search and migration policies in a first step, and then
design πq|r(o) in a second step to match, at the steady state, the empirical distribution over
commuting zones.

We do so by choosing the distribution of shocks {πq|r(o)} with the smallest total prevalence
that still allows us to exactly match the empirical distribution over commuting zones and
occupations pairs o. Our algorithm does so in a computationally efficient way: On an Intel
i7-9700 computer, solving for V , identifying πq|r(o), and solving for occupation pair o’s
steady-state distribution takes about 2.5 seconds.

Assigned parameters We parameterize the model at a monthly frequency. Households
retire and are replaced by new households at a monthly rate of 0.021/12, chosen so that the
average households’ work life lasts for 47 years. The effective discount rate ρ is set to the
retirement rate plus 0.05/12, corresponding to an annual time preference rate of 5%.

We categorize households using the occupation classification by Autor & Dorn (2013). To
economize on states, we drop occupations that are pursued by less than 3% of workers per
gender.7 This yields 18 occupation pairs, (of , om) ∈ {1, . . . , 3} × {1, . . . , 6}, that cover 93.5%
of all dual earner households in the ACS. Table 1 displays their frequency distribution.

We set the job separation rates δi(o) based on the gender × occupation-specific employment
to non-employment rates in the CPS. We use a Cobb-Douglas matching function, λ(θ) = θγ,
with matching elasticity γ = 0.2 as estimated by Lange & Papageorgiou (2020). We set the
search elasticity across locations to η = 0 so search effort is inelastic across submarkets as in
Albrecht et al. (2006), Kircher (2009) and Galenianos & Kircher (2009). For computational

7Following this criterion, we drop three occupations for women (“precision production and crafts”, “machine
operators assemblers and inspectors”, and “transportation/ construction/ mechanics agricultural occupations”)
and do not drop any occupations for men.
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efficiency, we limit workers to a maximum of four simultaneous searches and verify ex post
that the restriction is locally non-binding almost everywhere.8

Next, we normalize the high human capital realization to h = 1 and set b = 0.4 so the
home product equals 40% of a high-h workers’ labor product (c.f., Shimer 2005). With b

pinned down, we set h = b = 0.4, capturing the idea that low-h workers are marginally
attached to the labor market. Whether low-h workers join the labor force then depends on
the value gain from future human capital appreciation versus the childcare costs that incur if
they have children and their spouse is employed.

Our calibration of local productivities, zi(oi, r), exploits that for almost all (i, oi, r) the
median worker in our model has high human capital.9 With this is mind, we infer the local
productivities zi(oi, r) from the gender × occupation-specific median wages in a commuting
zone r, as measured in the ACS.10 We set their scale to normalize economy-wide average
earnings to 1.

Next, we use average rents for two bedroom apartments to inform the cost of living p(r) for
each commuting zones. We set childcare costs ξ(r) to 8.5% of the median household income
in each commuting zone, consistent with the average, age-weighted household expenditures
on childcare documented by Guner, Kaygusuz & Ventura (2020). We set the monthly arrival
rate of children to the fertility rate among childless households in the ACS, πk↑ = 0.075/12.
We then use the departure rate of children to match the share of households with children in
the ACS, which is 56%, yielding πk↓ = (0.56−1 − 1) · πk↑ net of the retirement rate.11

Finally, we combine several existing and web-scraped data sources to inform the local
amenity values a(k, r). Our data include information on crime rates, various climate and
weather categories, walkability scores, measures of beach access and quality, and various
data on infrastructure such as school and hospital quality or local government expenditures.
We assume that local school quality is valued by households with children, while all other

8We verify this in the calibrated model by increasing the maximum number of simultaneous searches to
five. We find that less than 0.001% of workers search in more than four markets simultaneously.

9Intuitively, the median worker is determined by the appreciation and depreciation rates πh↑ and πh↓,
which we estimate below to match the average unemployment scar in the data. Given h − h, which is about
five times the size of the average impact scar, our estimated process implies that the majority of workers has
“high” (or, more accurately, “median”) human capital. We verify numerical that conditional on (i, oi, r), the
median workers are indeed of type h for almost all gender × occupation × commuting zone combinations.

10Equating productivities with wages is model-consistent for two separate reasons. First, for labor contracts
to be self-enforcing in the absence of contractual commitments on the worker-side, workers must be paid their
labor product at all times other than during the instant they are hired (see, e.g., Menzio & Shi 2011; Baley,
Figueiredo & Ulbricht 2022). Second, while our calibration uniquely pins down the vacancy cost c relative
to search budgets κ̄i(e, s)(1−γ)/γ , their absolute value is indeterminate. Without loss of generality, we can
thus consider the limit where both c → 0 and κ̄i(e, s) → 0, in which case workers are always paid their labor
product under the unique equilibrium labor contract.

11To be consistent with our “perpetual youth” setting, we re-weigh the ACS sample when computing the
fertility rate and the share of households with children so that age is distributed geometrically in the sample.
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Table 2: Assigned parameters

Parameter Value Source

Time preference rate, annualized .05 literature
Retirement rate, annualized .021 avg. working life of 47 years
Home production, b .4 Shimer (2005)
High human capital, h 1.0 normalization
Low human capital, h .4 same as b, see text
Search elasticity across locations, η .0 literature
Matching elasticity, γ .2 Lange & Papageorgiou (2020)
Child arrival rate πk↑, annualized .075 ACS
Child departure rate πk↓, annualized .038 ACS
Job separation rates, {δi(o)} see text CPS
Local productivities, {zi(oi, r)} see text ACS
Cost of living, {p(r)} see text Opportunity Atlas
Child care costs, ξ(r) see text Guner, Kaygusuz & Ventura (2020)
Amenities, {a(k, r)} see text Opportunity Atlas, web scraped

amenities are valued by all households. Appendix B.3 describes the data in detail.
One challenge in calibrating the amenity value is that a(k, r) enters u(e, s, r) in income-

equivalent units, requiring us to convert the various data into income-equivalent units. To do
so, we assume that the income-equivalent amenity value has the same passthrough rate on
local rents as cross-regional differences in wages. Given the assumption, we can then infer the
amenity value from the following regression:

pr = β0 + ϵ ·
(
wr + β′

1a
all
r + β′

2a
kids
r

)
+ vr, (11)

where pr are average rents in commuting zone r, wr is the local median household income,
and aall

r and akids
r collect our various amenity data (applicable to all households and only for

households with children, respectively). We estimate a passthrough rate ϵ of 0.204, which is
consistent with there being significant mobility frictions (as our framework indeed delivers).
Given our estimate for ϵ, we infer the local amenity values as

a(k, r) = a0 + β′
1a

all
r + β′

2a
kids
r · 1k=1,

for some constant a0. Without loss of generality, we normalize a0 so that minr a(0, r) = 0.12

Figure 3 plots the estimated amenity values for k = 0.
We summarize all exogenously assigned parameters in Table 2.

Estimated parameters We calibrate the remaining parameters using the method of
moments, with weights chosen to minimize the relative distance between model and empirical

12Constant shifts in a(k, r) translate to constant shifts in V by a0/ρ and are thus of no consequence.
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Figure 3: Income-equivalent amenity value. The plot shows the monthly amenity value for households
without children (k = 0). The range of amenity values is normalized so that minr a(0, r) = 0. Commuting
zones with missing data are filled in white.

moments. All model moments are computed at the steady state. Our estimation leverages
that the steady state distribution is generated by 18 non-communicating Markov chains,
separated by occupation pairs o. In choosing target moments and parameters that are also
indexed by o, we can therefore split the estimation into 18 subproblems, greatly reducing the
computational complexity. As usual, conditional on o, all parameters are identified jointly. In
the following, we provide a heuristic mapping from moments to parameters to guide intuition.

In our model, the strength of search frictions is determined by the search budgets relative
to the vacancy cost, κ̄i(e, s)/cγ/(1−γ), which aren’t separately identified. For some arbitrary
normalization of c, we parameterize κ̄i(e, s) = κ̄i(o), and use it to match the job finding rate
out of unemployment at the gender × occupation-pair level, as computed in the CPS. To be
consistent with the data, we only consider non-employed workers that are actively searching
for jobs when computing the job finding rate in the model.

Next, following, e.g., Jung & Kuhn (2019) and Jarosch (2022), we estimate the human
capital appreciation and depreciation rates, πh↑|e(o) and πh↓|u(o), to match the empirical
steepness of job ladders. To do so, we simulate the wage scar of male workers separated from
their job at t = 0 relative to the control group of non-separated workers, log(wtreat

t /wcontrol
t ),

and match it to the estimate wage scars in Huckfeldt (2022) for t = 12 and t = 36 months.
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Table 3: Summary of target moments

Moment Level No. of moments Source ≈ maps to

Job finding rate of × om × gender 36 CPS κ̄i(o)
Wage scar, 1 & 3 yrs of × om × year 36 Huckfeldt (2022) πh↑(o), πh↓(o)
Migration rate, by bin of × om × bin 144 ACS χ(q|o, r)
Distribution over CZs of × om × r 9306 ACS πq|r(o)

Notes.–Due to adding up constraints on the distributions, the number of linearly independent moments is
reduced by 36. The number of independent moments is equal to the number of estimated parameters.

It remains to calibrate the migration costs χ(q|s, r). To do so, we differentiate between
“work-related” migration, which in the model corresponds to the endogenous migration through
job search, and other “residual” migration, captured in the model through location shocks.
On the empirical side, we consider 45% of all observed migration as work-related, based on
the survey evidence in Maurer (2017).

With this distinction, we calibrate migration costs by targeting, for each occupation pair o,
both the rate of work-related migration and its distribution in the ACS. Specifically, most
migration in the data occurs at short distances and between commuting zones with similar
population sizes. To capture these facts, we parameterize χ(q|s, r) in terms of the spatial
distance between any two commuting zones’ population-weighted centroids, dgeo(r, q), and
the absolute difference in their population sizes, dpop(r, q). Specifically, we set

χ(q|o, r) =
∑

k∈{geo,pop}

∑
j∈{1,...,4}

χkj (o) · 1dk(r,q)∈Bink
j
,

with four geographic and four population bins, {Bingeo
j ,Binpop

j }4
j=1, chosen to capture the

cross-bin variation in migration rates (c.f. Figure 5). For each occupation pair o, we normalize
χgeo

1 (o) = 0 and then estimate the seven remaining cost parameters, {χkj (o)}, to match the
total work-based migration rate of occupation pair o as well as its frequency distribution over
the four geographic and the four population bins.

Table 3 summarizes the moments targeted in our estimation.

4.3 Model Validation

Targeted moments By design, our model matches exactly the cross-sectional distribution
of households over commuting zones by occupation pairs. Figures 4 and 5 compare the
remaining 216 moments with their data targets. The model fits these moments almost
perfectly as well.
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Figure 4: Targeted moments: Job finding rates, annualized migration rates, and wage scars by occupation
pairs. Occupation pairs are grouped by the woman’s occupation, of , with each individual tick corresponding
to the man’s occupation, om.

Untargeted moments Table 4 exhibits the model’s fit vis-à-vis few non-targeted moments
that are relevant in our context.

First, consider the employment rates by gender. While we target job-finding rates out
of unemployment, employment rates crucially depend on a labor participation choice. As
explained above, the labor participation choice in turn depends on the fraction of low-h
workers, their productivity at home relative to the market, their option value of gaining
work experience, and childcare costs – all of which are calibrated independently of the
employment rate. The estimated employment rates are somewhat too large in the model,
especially for women, suggesting that our calibration somewhat understates the relative value
of non-employment. One possible omission that may explain this discrepancy is the absence
of cultural norms in our model that are known to reduce female labor market participation
(Fernández 2013; Fernández & Fogli 2009).

Second, with regards to the gender wage distribution, the model captures both the wage
and earning gaps in the data. In addition to the median wages (which we target), the gender
wage distribution notably depends on the cross-sectional and cross-gender distributions of
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Figure 5: Targeted moments: Migration frequency over geographic distance and over population gap

Table 4: Untargeted moments

Moment Model Data

Employment rate, women 0.85 0.68
Employment rate, men 0.93 0.85
Dual earner share 0.80 0.61

Gender wage ratio, female-to-male 0.64 0.64
Gender earnings ratio, female-to-male 0.59 0.51

Residual migration, annualized (×100) 1.28 1.39

human capital, which are untargeted.
Third, it is worth briefly discussing the prevalence of migration due to location preference

shocks. Our estimation targets 45% of the empirical migration to be explained by work-based
migration, while minimizing the residual migration from location shocks subject to matching
the cross-sectional distribution over commuting zones. As a sanity check, it is worthwhile
to verify that the frequency of location shocks does not exceed the residual migration in the
data. Reassuringly, this is indeed the case.
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Figure 6: Earnings gains from migration. Earnings gains are computed as log-differences relative to an
identical group of households absent migration. Solid lines show the earnings gains in the estimated model
economy, dashed lines show the earnings gains for the hypothetical case without colocation friction.

5 Quantifying the Colocation Friction

We are now ready to study the consequences of the colocation friction for the U.S. labor
market. Applying the characterization in Proposition 1 to the estimated model, we find that
the colocation friction binds in virtually all non-local searches, q ≠ r, and is slack in virtually
all local searches, q = r. In the remainder of this section, we quantify the consequences of
when the friction binds, beginning with the consequences for migrating couples.

5.1 Direct Effect on Post-Migration Earnings

To provide context, consider first the labor market experience of migrating households in the
estimated model economy. About three quarter of all work-based migration is initiated by a
job offer to men; so women are about three times as likely as men to become a trailing spouse.

We assess the implications of this imbalance by simulating the average trajectory of a
representative sample of migrating households with a single migration event at t = 0, and
compare it with the average trajectory of an identical sample absent migration. The solid
lines in Figure 6 show the log-differences between the two groups. Cumulatively over their
lifetime, the average migrating man experiences earnings gains of 56.9% compared to the
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Table 5: Consequences of migration for earnings

∆PV in 3-year earnings ∆PV in lifetime earnings

Baseline No colocation Baseline No colocation
Leading Spouse economy friction economy friction

Women 24.1 % .019 (19.0 %) .079 (80.7 %) .241 (37.4 %) .307 (47.7 %)
Men 75.9 % .127 (75.1 %) .150 (88.4 %) .591 (56.9 %) .616 (59.3 %)

Notes.—∆PV in earnings denotes the difference in the present value of earnings between a representative
sample of migrating households and an identical sample without migration. Shown without parentheses are
level gains, denominated in units of economy-wide average lifetime earnings. Shown in parenthesis are the
same gains, expressed relative to a spouse’s gains in the control group.

control group. These gains are mostly driven by differences in local productivities.
The migration experience of men contrasts starkly with that of women. In absolute terms,

mens’ lifetime migration gains are about 2.5 times that of women (6.7 times during the first 3
years). In parts, this reflects the earnings gap across genders. To control for the systemic
difference in earnings, consider women’s migration gains compared to their alter ego in the
non-migrating control group (parenthesized numbers in Table 5). Based on these relative
gains, women continue to benefit significantly less from migration than men, especially during
the first 3 years where the gains differ by a factor of 4. On the one hand, this is because
women are more likely to be jobless in the first few months after migration, reducing their
earnings and human capital. On the other hand, women benefit less from migration even in
the long-run, due to households’ location choices, which tend to come with larger productivity
gains for their spouses (48% for men vs. 35% for women).

We next isolate the causal effect of the colocation friction on these migration gains and
gender gaps. To do so, we consider the same migrating sample of households, but now simulate
hypothetical trajectories when the colocation friction is relaxed (dashed lines in Figure 6).13

Not surprisingly, the hypothetical trajectories are close to the estimated responses for men,
reflecting that few men are trailing spouses. By contrast, we see huge short-term differences
for women, capturing the direct effect of the colocation friction on post-migration earnings,
both from its impact on employment and the resulting loss in work experience. While the
employment effect all but disappears after about 1 year, the human capital losses from the lack
in work experience persist beyond that. Over their lifetime, the colocation friction reduces
the migration gains of women by 0.066 (in units of economy-wide average lifetime earnings),
with most of these losses (0.060) accruing during the first 3 years. In relative terms, these
losses reduce womens’ migration gains over the first 3 years by 76% and account for 92% of

13Here we keep both the migrating sample of households and their migration destinations fixed, changing
only the initial employment status according to the hypothetical correlation policies that maximize households’
lifetime value. We explore the impact of the colocation friction on migration rates, the composition of
migrating households, and their location choices in Sections 5.2 and 5.3.
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Figure 7: Impact of the colocation friction on work-migration. The dashed line shows the annual steady-state
migration rate in the estimated model. The solid line shows the rate for a representative sample of households
for whom the friction is relaxed from t = 0 onward.

the corresponding gender gap.14

5.2 Discouraged Migration

As hypothesized by Mincer (1978), the colocation friction may not only affect the labor market
experience for households that migrate but, perhaps more importantly, also affect households’
propensity to migrate in the first place.

To quantify the relevance of Mincer’s hypothesis, we next relax the colocation friction for
a representative, zero-measure sample of households and their descendants, and study their
migration behavior in the sequel.15 Figure 7 plots the migration rate for these households.
After the colocation friction is relaxed, work-migration increases initially by 50%, and then
converges to a steady-state rate that is about 20% above the steady-state rate in the estimated
economy.16

Migrating vs. discouraged households Given the difference in migration rates, we next
ask who are the households that are discouraged from migrating due to the colocation friction.
To do so, Table 6 contrasts average characteristics of households that migrate when the

14Here, the gender earnings gap is computed as wm−wf

(wm+wf )/2 where wm and wf are the present discounted
value of the 3-year earnings gains relative to the corresponding control group.

15As treated households retire, we replace them by an equal mass of newborns in order to ensure that the
treatment sample converges to a steady state and is comparable to the estimated model. If instead we do
not replace retiring households, migration rates in both the treatment and the comparison group decline as
the population ages, but more so in the comparison group. In this case, the log-gap between treatment and
comparison group is the same at t = 0, and then widens over time compared to the one shown in Figure 7.

16Note that by relaxing the friction perpetually, momentary migration incentives are reduced by the option
value of migrating without friction in the future. Alternatively, we can measure the “compound effect” of the
colocation friction on momentary migration rates by relaxing the friction during only a short time window
and then reimpose it after. In this case, migration more than triples to an annual rate of 3.65% while the
friction is relaxed.
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Table 6: Comparison of baseline migrants to discouraged migrants

Migrating Discouraged Population
average

Children .19 .36 .56
Both employed .34 .82 .80
Both nonemployed .23 .01 .01
Household income 1.12 2.12 2.00
Employment rate

women .52 .89 .88
men .60 .93 .93

Human capital
women .76 1.00 .79
men .88 .99 .86

Local productivity
women .91 1.01 .98
men 1.29 1.34 1.50

Notes.–Displayed are averages for three household groups: (i) Migrating:
households who migrate in the baseline economy. (ii) Discouraged: house-
holds who do not migrate in the baseline economy, but migrate when the
colocation friction is relaxed. (iii) Population average: All households,
weighted by the steady-state distribution.

colocation friction is active with those that only migrate when the friction is relaxed.
When the friction is active, migrating households tend to be childless with below-average

household incomes. In line with the stylized examples in Section 3.3, these are precisely
households for whom the colocation friction is least consequential. Crucially, their poverty
tends to be caused by outside factors (employment status and local productivities) rather
than their intrinsic earnings potential defined by their human capital. Accordingly, migration
is indeed profitable.

By contrast, households who are discouraged from migrating by the friction tend to be
dual-employed with above-average incomes and extremely high human capital, resembling
the stereotypical “power couple”. Given their human capital, they have the highest potential
returns from migrating, yet they are also most affected by the colocation friction given their
above-average incomes and the looming loss of work experience for the trailing spouse (both
of which favors a more convex shape of the value function as demonstrated in Section 3.3).

Earnings losses from discouraged migration We quantify the earnings losses from
discouraged migration by comparing lifetime earnings with and without migration among
discouraged households. Measured in units of economy-wide average lifetime earnings, the
earnings loss from discouraged migration is 0.112 for women and 0.135 for men (or, equivalently,
13% and 10.5% of their own lifetime earnings subject to the friction).
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Figure 8: Long-term impact on location choices

Table 7: Statistics of the average forgone relocation

Local productivities, women .172
Local productivities, men .287
Amenities .285
Rents .089
Childcare costs .024

Notes.—The table shows the difference in productivities, amenities, rents, and childcare costs between the
destination and origin of the average forgone relocation. All differences are in units of economy-wide average
earnings.

Consequences for location-choices We next explore the long-run impact on location
choices due to discouraged migration. To do so, we compare the steady-state distribution over
commuting zones among the sample of households without colocation friction with the one in
the estimated economy. The two distributions diverge by a total mass of 2.7%. Figure 8 plots
the implied relocation flows. Broadly, without the colocation friction, households would move
from the Rocky Mountains and Midwest to the Pacific, Northeast, and South.

As summarized in Table 7 , these relocations would raise household earnings and amenities,
while also raising the cost-of-living. For households with children that realize their earnings
potential, zf + zm,17 forgoing these relocations in light of the colocation friction imposes an
income-equivalent loss of 0.63 or, equivalently, 32% of the average household income.

17A worker realizes their earnings potential when hi = ei = 1, in which case their earnings zihiei equal zi.
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Figure 9: Impact of the colocation friction on earnings, employment, local productivities, and human capital.
The plots show log-differences between a representative sample of households for whom the friction is relaxed
from t = 0 onward and the steady state where the friction is active.

Table 8: Steady state comparison: baseline economy vs. correlated matching benchmark

Women Men

Earnings 2.03 % .84 %
Employment .75 % .19 %
Local productivity .47 % .51 %
Human capital .87 % .20 %

Notes.—Differences are computed between the steady-state distribution of the baseline economy and the
steady-state distribution of the benchmark without colocation friction.

5.3 Long-run Consequences for Employment, Earnings and Welfare

We now quantify the overall impact of the colocation friction on employment, earnings
and welfare, taking into account the direct effect on post-migration employment as well as
discouraged migration and its consequences for migration rates and location choices. To do
so, consider again the sample of households for whom we have relaxed the colocation friction
at t = 0. Figure 9 plots transition dynamics in their earnings, employment, local productivity,
and human capital. Note that these effects are smaller by about an order of magnitude
compared to the conditional dynamics in Figure 6, reflecting that even without the friction,
migration along the transition path occurs only at an annual rate of 1.4–1.7%.

Immediately after relaxing the colocation friction, there is a strong expansion in womens’
employment, raising womens’ earnings by 0.76%. In the medium term, the additional work
experience translates to human capital gains that raise womens’ earnings by an additional
0.87%. Finally, in the long-term, continued relocation to more productive commuting zones
raises womens’ earnings by another 0.47%. By contrast, the combined effect of the colocation
friction on male earnings is more subdued.

Table 8 compared the long-run earnings differences across steady states. Taken together,
the colocation friction reduces average steady-state earnings of women by 2.03% and reduces
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Table 9: Lifetime utility gains by household occupation pairs

o2

o1 1 2 3 4 5 6 mean

1 2.69 1.86 1.33 2.13 1.61 1.48 2.25
2 1.18 1.13 .91 .96 .78 .85 1.02
3 .64 .67 .37 .55 .48 .48 .53

mean 2.15 1.44 .88 1.38 1.03 1.03 1.61

Notes.–Gains are denominated in lifetime earnings equivalents and are denoted in percent. Here, o1 is
the woman’s occupation and o2 is the man’s. Occupation codes follow the classification by Autor & Dorn
(2013): (1) management/professional/technical/financial sales/public security, (2) administrative support and
retail sales, (3) low-skill services, (4) precision production and crafts, (5) machine operators, assemblers and
inspectors, (6) transportation/construction/mechanics/mining/agricultural occupations.

average steady-state earnings of men by 0.84%. In addition, through its impact on location
choices, the colocation friction further reduces welfare by reducing the average amenity flow.
In income-equivalents, the value loss from amenities is equivalent to an additional reduction
in average earnings by 0.77%.

In sum, the colocation friction adversely affects trailing spouse’s careers, discourages
migration, and affects where households end up living. To summarize the impact on overall
welfare we contrast the lifetime utility of a household born into the estimated model economy
with that of a household born without colocation frictions. We find that, in income-equivalent
units, the loss in lifetime utility is equivalent to a 1.61% loss in lifetime earnings. Table 9
decomposes the gains by immutable occupation pairs. The gains are largest for households
where both spouses work in “management, professional, technical, financial sales or public
security professions”, and are lowest for households where both spouses work in “low-skilled
services”.

6 Concluding Remarks

This paper develops a spatial directed search model that captures the unique frictions that
characterize the job search by dual-earner households. We estimate the model for the
U.S. labor market. The estimated model matches, at the occupation-level, both labor market
and migration flows as well as the cross-sectional density of households over commuting zones.
We find that dual-earner households are exposed to a “colocation-friction” that vastly reduces
their gains from migration with long-run consequences for average employment and earnings
in the economy. All in all, we estimate that the colocation friction incurs a lifetime utility
loss equivalent to a 1.61% decrease in lifetime earnings.

Our framework is among the first that incorporates job search by dual-earner households

27



into a spatial model of the labor market. It is distinguished from the existing literature by its
analytical tractability, which opens the door to a large-scale estimation at the commuting-
zone level. It is also the first framework that models dual-earner job search as directed,
accounting for spouses ability to coordinate search effort across locations, thus exposing
spatially mismatched job offers as the true underlying friction.

The framework delivers rich predictions regarding dual-earner households’ careers and
gender discrepancies in employment and earnings. We view future applications of our
framework that further explore these aspects as well as the transformation to work-from-home
jobs that come with fewer spatial constraints as fruitful avenues.
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A Mathematical Appendix

A.1 Proof of Proposition 1

For a given value function, search policies in the correlated matching benchmark solve

max
{fi,q ,ωq ,yi,q}

∑
i,q

(fi,q − ωq) ∆Vi,q(e, s, r)
)

+
∑
q

ωq∆V corr
q (e, s, r) −

∑
i,q

fi,qyi,q


subject to (2), (3), (7) and (8). Observe that the objective is separable across q and is linear
in {ωq}. Thus, for any q, ωq is optimally set to one of the boundaries in (8), with the upper
boundary being optimal if and only if

∆V corr
q (e, s, r) ≥

∑
i

∆Vi,q(e, s, r).

This proves Proposition 1.

A.2 Kolmogorov Forward Equation

Collect all job finding rates {fi,q(e, s, r} along with all endogenous separations into µ, let n
denote the replacement process of retiring households by new ones, and define ϕ ≡ µ+ π + n.
Then the cross-sectional distribution, gt(e, s, r), evolves according to the following differential
equation:

dgt
dt (e′, s′, r′) =

∑
e,s,r

ϕ(e′, s′, r′|e, s, r) gt(e, s, r). (A.1)

From (A.1), we may obtain the steady state distribution by setting dg = 0 subject to ∑ g = 1.
In practice, when estimating the model, we embed the steady-state condition as a constraint

into our moments-matching algorithm when computing the distribution of location preference
shocks with the smallest total prevalence subject to matching the cross-sectional distribution
of households over commuting zones.

B Data Appendix

B.1 Data Sources

This appendix describes the data sources that we use in calibrating our model.
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American Community Survey (ACS) We construct our ACS sample using the years
2010–2019, restricting attention to individuals aged 18–64, living in the 48 contiguous states
(i.e., excluding Alaska, Hawaii, and Puerto Rico), who are part of a couple (married or
cohabiting). 1990 Census Occupation codes are mapped into the occupation classification by
Autor & Dorn (2013) using their crosswalk. We deflate wages to 2010 USD using the CPI. To
obtain median wages and occupation-shares by commuting zone (CZ), we adopt crosswalks
by Autor & Dorn (2013) to aggregate data from Public Use Micro Areas (PUMAs) to the
CZ-level.

Current Population Survey (CPS) We construct our CPS sample replicating the sample
restrictions used for the ACS. 1990 Census Occupation codes are mapped into the occupation
classification by Autor & Dorn (2013) using their crosswalk.

Opportunity Atlas We use CZ data from the Opportunity Atlas (Chetty et al. 2018). The
Opportunity Atlas draws on various U.S. data sources and aggregates them on the CZ level.
For a detailed description of several variables that we draw from the Opportunity Atlas see
also Chetty et al. (2016).

Web-scraped data We use web-scraping to obtain CZ-level information on local weather
and climate conditions, crime rates, walkability scores, measures of beach access and quality,
school and hospital quality and local government expenditures. Specifically, we scrape
information published on bestplaces.net, usnews.com, walkscore.com, and watersgeo.epa.gov.
The raw data are aggregated on the county and ZIP code level, respectively. To aggregate
these data to CZs, we use crosswalks by Autor & Dorn (2013) and Din & Wilson (2020). For
a description of all web-scraped variables and their sources see Table A.I in Appendix B.3.

Geolocation data To locate CZs in space we use county centroid geographic coordinate
system (GCS) coordinates provided by simplemaps.com. We apply the Albers equal-area
projection to transform GCS coordinates to Albers equal-area (AEA) coordinates.A1 The
advantage of using AEA coordinates is that they are cartesian; i.e., geographic distances can
be expressed as euclidean “straight-line” distances, which allows us to adopt the crosswalk by
Autor & Dorn (2013) to aggregate county coordinates to population weighted CZ centroids
and further aggregate commuting zones as described in Appendix B.4.

A1We follow Snyder (1982) in using the AEA standard parallels 29.5º and 45.5º north.
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B.2 Measuring Labor Market and Migration Flows

Labor Market Flows We measure labor market flows by using the rotating panel structure
of the CPS. The CPS is a monthly survey conducted among a nationally representative sample
of households. Leveraging matched individual records for consecutive months, we compute
monthly transition frequencies between employment states, conditioning on sex and household
occupations.

Migration Flows We measure migration flows using ACS data on where individuals reside
when surveyed and their residence one year prior. In particular, the ACS records the Public
Use Micro Area (PUMA) individuals reside in when surveyed and the Migration Public Use
Micro Area (MIGPUMA) one year prior. MIGPUMAs are constructed from one or multiple
PUMAs. We map MIGPUMAs into PUMAs using a crosswalk published by usa.ipums.org,
and map PUMAs into CZs using crosswalks developed by Autor & Dorn (2013). In computing
across-CZ migration rates, we adopt a conservative approach, counting as cross-CZ migration
only a change in residency from a MIGPUMA to a PUMA that have zero overlap in the CZs
they intersect with. To obtain spatial distances between migration origin and destination, we
use spatial coordinates of population weighted CZ centroids. For differences in population size
we use population counts as recorded in the ACS. We aggregate to the PUMA and MIGPUMA
level, respectively, using the crosswalks mentioned above together with a crosswalk from
counties to CZs also by Autor & Dorn (2013).

B.3 Measuring Amenities

This appendix describes the data inputs and results of regression 11, which we use to convert
our CZ-level amenity data into income equivalent units. Table A.I describes the definition
and data source of each amenity in our data. Table A.II summarizes the estimation results of
regression (11). Almost all coefficient estimates are statistically significant at the 1% and all
are significant at the 10% level. The adjusted R2 of the regression is 92%.

B.4 Merging Commuting Zones

This appendix describes the algorithm by which we merge CZs that are close geographically
and in terms of observed characteristics. Geographic distances between CZs are computed
based on AEA coordinates of CZ centroids. We define closeness in terms of all observed CZ
characteristics that feed into our calibration; i.e., rents, amenities with and without children
(converted to income equivalent units as described in Section 4.2), the local population counts
of occupation pair o, and gender × occupation-specific median wages. As a joint measure of
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Table A.I: Description of amenities data

Variable Description Data Source

Summer climate score Index that captures temperature, precipitation,
average number of sunny days, freezing days,
extremely freezing days. Scale: 1–10, 10 being
the best. Based on April–Sept data.

bestplaces.net

Winter climate score Index that captures temperature, precipitation,
average number of sunny days, freezing days,
extremely freezing days. Scale: 1–10, 10 being
the best. Based on Oct–March data.

bestplaces.net

Population density Number of people per square mile. Opportunity Atlas

Local government
expenditures

Total local government expenditures per capita,
USD per annum.

Opportunity Atlas

Crime rate Annual per capita crime rate per million people. Opportunity Atlas

Walkability score Score based on availability of infrastructure and
number of restaurants, bars and coffee shops
within 5 minutes walking distance. More choices
within a radius yields a higher score. Scale:
0–100, 100 being the highest walkability.
Aggregated to CZ level from Zip Code Level.

walkscore.com

Beach access
(total length in miles)

The EPA’s measurement of beach access (official
beaches, not just shoreline) in each county.
Aggregated to CZ level from county level.

watersgeo.epa.gov

No. of top tier beaches Beaches in the most popular tier, sampled one
month before swim season.

watersgeo.epa.gov

Hospital quality State’s ranking in health care quality. State data
is applied to each CZ in the state. Scale: 1–10,
10 being highest quality.

usnews.com

Annual precipitation
(inches)

Annual inches of precipitation. Aggregated to
CZ level from county level.

betsplaces.net

School expenditure per
student

Average expenditures per student in public
schools, USD per annum.

Opportunity Atlas
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Table A.II: Empirical relationship between amenities and rent

Dependent variable: Annual rent in $ Coefficient estimate Standard error P-value

Median household wage (passthrough rate, ϵ) 0.204 0.006 0.000

Summer climate score 386.234 38.398 0.000

Winter climate score 1169.859 52.263 0.000

Population density (people/mile2) 0.5519 0.520 0.000

Local government expenditures ($ per capita) 0.342 0.083 0.000

Crime rate (per mio. people) -38.293 16.934 0.024

Walkability score 30.966 3.420 0.000

Beach access (total length in miles) 42.267 5.759 0.000

No. of top tier beaches 33.661 10.887 0.002

Hospital quality 98.093 19.276 0.000

Annual precipitation (inches) -7.629 3.935 0.053

School expenditure per student ($ per annum) 0.126 0.052 0.015

Notes.– Displayed are coefficient estimates of the relationship between amenities and rents on the CZ level
(equation (11)). Summer climate score and Winter climate score and Hospital quality are recorded on a
1–10 scale, 10 denoting the best possible score. The Walkability score is recorded on a 0–100 scale, 100
denoting highest walkability. The regression includes 690 commuting zones (out of a total of 740) for which
all amenities and annual rents are observed in our data. The adjusted R2 of the regression is 0.92.

geographically proximity and similarity in observables of CZs, we use the weighted euclidean
norm

dCZ(r, r′) =

√√√√√ 1
J

∑
j

(
xj(r) − xj(r′)

ωj

)2

,

where x1(r) and x2(r) are AEA latitude and longitude and {xj(r)}Jj=3 are the remainder
characteristics of CZ r. The weights {ωj} correspond to the standard deviations of the
observed characteristics across CZs, and across all pairwise combinations of CZs for the AEA
coordinates.

Equipped with dCZ and some cutoff d̄, our algorithm proceeds as follows:

1. Start from the full list of CZs. Sort it in ascending order in terms of population size.
Denote the resulting sorted list by I = (r0, r1, ..., rK). Start from k = 0.

2. Find l∗ = argmin
l>k

dCZ(rk, rl).

3. If dCZ(rk, rl∗) ≤ d̄:

(a) Merge rl∗ with rk (removing rl∗ from I). Update the characteristics of the newly
merged CZ, {xj(rk)}Jj=1, by summing population sizes and type-o household
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population counts of rk and rl∗ , and taking population weighted averages of all
other characteristics.

(b) Iterate through {rm : rm ∈ I,m < k} and merge each element rm satisfying
dCZ(rm, rk) ≤ d̄ with rk, following the steps outlined above to update the charac-
teristics, {xj(rk)}Jj=1, and removing rm from I.

4. Increase k by 1 and proceed to the next element in I. Repeat steps 2–4 until k = K.

The resulting I contains the list of merged CZs.

We set the cutoff to d̄ = 1
3 , implying that if two commuting zones are identical in all but one

characteristic, then the most they can differ in that one characteristic is 1
3 standard deviation.

Starting from 690 CZs with non-missing data, out algorithm delivers a set of 517 merged
CZs. The average geographic distance between CZ’s centroids merged by our algorithm is 111
kilometers. The average distance in terms of dCZ is 0.2.
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