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A Data and Additional Empirical Results

A.1 Data

Our data combines information from three sources. It covers all regime spells, as collected by Geddes,

Wright and Frantz (2014, GWF), that existed on January 1st of each year between 1946 and 2010 in

countries with more than one million inhabitants.1 GWF define regimes by “the rules that identify

the group from which leaders can come and [that] determine who influences leadership choice and

policy” (p. 314).2 Since GWF lists non-autocratic regimes only at a yearly frequency, we impute the

begin (end) dates for non-autocratic regimes from (i) the end (begin) dates of the previous (next)

regime and (ii) the begin date of the nearest Polity IV case within the same year. If (i) and (ii) yield

no match, we encode the begin dates as July 1st and the end dates as June 30th.

We measure the inclusiveness of regimes using the polity score, normalized between 0 and 1,

from the Polity IV Project (Marshall, Gurr and Jaggers, 2017), which ranks political regimes on a

21 point scale between autocratic and democratic. Specifically, we merge all polity spells listed in

the “Polity IV Polity-Cases” dataset to our sample of GWF regime spells, harmonizing start dates

on the basis of GWF spells whenever the start date of a polity case is within half a year (183 days)

of a GWF start date. Otherwise, we keep track of changing polity scores by subdividing GWF spells

into subspells.3

1While the published GWF database only includes regimes that existed on January 1st of a given year, the
accompanying code book also categorizes spells lasting less than a year when classified as autocratic. We complete the
dataset by manually coding spells lasting less than a year as categorized in the GWF codebook; if no information is
provided, we code them based on their description in the codebook for the Archigos database of political leaders.

2Note that by focusing on the ruling group, the definition allows for leadership succession within regimes (if the
identity of the ruling group remains unchanged) as well as regime changes without leadership replacement (if the leader
stays in power despite a change in the ruling group, e.g., via reforms). Similarly, the definition allows for transitions
that lead to a succession of regimes with similar scores of political inclusiveness.

3For some polity spells, Polity IV assigns “standardized authority scores” that do not fall into the autoc-
racy–democracy range. The score of -66 encodes foreign “interruption”, which we encode as missing. The polity scores
of -77 (“interregnum”) and -88 (“transition”) identify transitional episodes. We interpret GWF regime transitions that
occur during a transitional polity episode as the event defining the polity transition. Accordingly, transitional episodes
just before a GWF transition are encoded with the last non-transitional polity score within the old GWF regime, while
instances of transitional episodes just after a GWF transition are encoded via the first instance of a non-transitional
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Third, we classify the GWF regime transitions primarily based on information provided by GWF

(variable “howend”). If the information in GWF is unavailable, we match the GWF transitions to

the nearest leader exit, taken from the Archigos database of political leaders by Goemans, Gleditsch

and Chiozza, 2009, within half a year, and use the variables on the types of exit and entry to label

the regime transitions. All violent regime transitions that are accompanied by popular protest, civil

war, or coups are classified as revolts. Peaceful transitions where political insiders either actively

change rules or newly allow for competitive elections or where there is no irregular leader change,

are labeled democratic reforms when accompanied by an increase in the polity score and autocratic

consolidations when accompanied by a decreasing polity score. All transitions influenced by foreign

governments are called foreign imposition. All remaining transitions are collected in the residual

category other.

The resulting database covers 494 regime spells in 155 countries covering a total of 8843.87

country-years.

A.2 Estimation of Transition Hazards and Robustness

Transition hazards and regime maturity The hazards, reported in Figure 1, are estimated by

differencing and smoothing over Nelson-Aalen estimates for the cumulative hazard rate, correcting

for left and right censoring. Here we explore the robustness of the findings controlling for polity and

region fixed effects.4 Specifically, we use a Cox proportional hazard model, with hazard rate

ps(τi,t|λi,t, ri) = h(τi,t) exp(f(λi,t) + ri) for s ∈ {reform, revolt}, (A.1)

where h(τi,t) is the baseline hazard, identified non-parametrically as a function of maturity τi,t, f is

a cubic spline in polity λi,t, and ri are the region fixed effects.5 Figure A.1 plots the baseline hazard

rates h for revolts and reforms, respectively. The results are similar to the ones in Figure 1, albeit

with slightly larger confidence intervals (the loss in precision is expected given the small number of

transition events and the large number of explanatory variables included in the current specification).

Transition hazards by regime type Specification (A.1) already controls for the political system,

but continues to impose a baseline hazard h that is independent of λ. To explore inasmuch the

documented stabilization patterns equally apply to autocracies and democracies, we also compute

polity score within the new GWF regime. (If the new GWF regime does not include a non-transitional polity score, we
use the date of the next GWF transition to assign a date to the polity transition.) Finally, transitional episodes within
a given GWF regime spell are encoded using the subsequent polity score.

4Region definitions are based on the United Nations geoscheme, which we use to define 10 distinct regions in total
(Eastern Europe, Eastern and Central Asia, Middle America, Northern Africa and Arabic Peninsula, South America,
South-Eastern Asia, Western and Central Africa, Western Europe, Western Offshoots). Note that disentangling
the geographic controls further is likely to cause incidental parameters problems (biasing our estimators given their
nonlinearity), as already the region fixed effects turn out to be only weakly identified in our specifications.

5Following the recommendations of Harrell (2001), the cubic spline has five knots located at the 5th, 27.5th, 50th,
72.5th and 95th percentile of the distribution of polity (corresponding to the values 0.05, 0.15, 0.45, 0.90, and 1,
respectively).
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Figure A.1: Empirical transition hazards for revolts (left panel) and reforms (right panel). Notes.—Hazards are
the baseline hazards estimated via (A.1), normalized relative to the unconditional hazard of revolts and reforms,
respectively. Shaded bands correspond to 80 percent bootstrap confidence intervals, clustered at the country level.

the hazard rate separately for regimes with λ ≤ .5 and λ > .5. The results for the combined revolt

and reform hazards are shown in Figure A.2 (all results continue to hold if we separate the hazard

by both origin and mode of transition). It is evident that the stabilization equally applies to regimes

on the autocratic and democratic side of the spectrum.

Hazard ratios of political systems To estimate the relation between political inclusiveness

and transition hazards, reported in Figure 2, we re-estimate (A.1) for the combined failures due to

reforms and revolts. The estimated relationship is given by the cubic spline f .

B Mathematical Appendix

B.1 Effectiveness of Reforms

Here we show formally that outsiders have no incentives to ever refuse becoming enfranchised. The

argument also implies that agents born as insiders never choose to rebel if given the choice. To show

this, we need to show that

(1− p(·, xt))u(xt) ≥ max
{
θ̂tψ(st), γit

}
.

A lower bound on the utility as an enfranchised insider is u(1), because xt = 1 is in the choice

set of insiders; i.e., (1 − p(·, xt))u(xt) ≥ (1 − p(·, 1))u(1) = u(1). When the best outside option

is to not support a revolt, the result trivially follows from u(1) ≥ γit for all i and t. For the

case, where an outsider’s best outside option is to revolt, an upper bound on the utility is given

by ψ(1) = h(1)u(1), because by Assumption 1 revolts are more rewarding when they have more

supporters; i.e., θ̂tψ(st) ≤ ψ(st) ≤ ψ(1). Noting that h(1) ≤ 1 gives the result.
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(a) Hazard for λ ≤ .5
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(b) Hazard for λ > .5
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Figure A.2: Empirical transition hazards for regimes on autocratic side (left panel) and democratic side (right panel)
of the polity spectrum. Notes.—Hazards are normalized relative to the unconditional hazard for autocracies and
democracies, respectively. Shaded bands correspond to 80 percent bootstrap confidence intervals, clustered at the
country level.

B.2 Proof of Proposition 1

Using (7), we can rewrite (8) as

π(s, x, θ̂) ≡ s−min{f(s, (1− x)θ̂), 1− x} = 0 (B.1)

for

f(s, y) ≡ yψ(s).

Recall that u(1) = 1 and h(·) ∈ [0, 1]. By Assumption 1, f is therefore increasing and (weakly)

concave in both arguments. Accordingly, f(s, y) ≤ y, allowing us to drop the min-operator from

(B.1).

As f(0, y) = 0 for all y ∈ [0, 1], there always exists a solution to (B.1) at s = 0. We distinguish

two cases. First, let y = 0 (i.e,. when θ̂ = 0 or x = 1). Then f(s, y) = 0 for all s, so that s = 0 is

the unique stable solution to (B.1).

Second, let y > 0. By Assumption 1, f1(0, y) > 1, so that s = 0 is unstable.6 We now show the

existence of a unique stable fixed point s > 0. Specifically, f1(0, y) > 1 implies that f(s̃, y) > s̃ for

s̃↘ 0 and any y > 0. On the other hand, as noted above, f(s̃, y) ≤ y ≤ s̃ for s̃↗ 1. Continuity of

ψ (and thus of f), therefore imply the existence of a fixed point s∗ > 0. Monotonicity and concavity

of f further imply that s∗ is unique on (0, 1]. Clearly, it must hold f1(s∗, y) < 1, and so s∗ is stable.

The above arguments establish that st is uniquely determined by a (time-invariant) function

s : (θ̂t, xt) 7→ st. It remains to be shown that ∂s/∂θ̂t ≥ 0 and ∂s/∂xt ≤ 0. Implicit differentiation on

6I.e., iteratively best responding to any perceived ŝ = ε > 0 leads to a distinct equilibrium s∗ > 0 described in the
following.
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(B.1) implies that

∂s

∂xt
= −θ̂t ψ(st)×

(
∂π

∂st

)−1

and
∂s

∂θ̂t
= (1− xt)ψ(st)×

(
∂π

∂st

)−1

,

where
∂π

∂st
= −(1− xt)

∂γ̄

∂st
+ 1.

Since ψ is bounded by ψ(1) = 1, (8) implies that limθ̂t→0 st = limxt→1 st = 0, and therefore the case

where θ̂t = 0 or xt = 1 is a limiting case of θ̂t 6= 0 and xt 6= 1. From the implicit function theorem it

then follows that s is differentiable on its whole support. As noted above, f1(st, y) < 1, implying

γ̄2(θ̂t, st) < (1− xt)−1 at st = s∗. Thus ∂πt/∂st > 0 for all (θ̂t, xt) ∈ [0, 1]2, which yields the desired

results.

Finally, while we developed the proof for pure strategies above, it is easy to see that the

proposition generalizes to mixed strategies. By the law of large numbers, in any mixed strategy

equilibrium, beliefs about s are of zero variance and, hence, the arguments above apply, implying

that all outsiders, except a zero mass i with γi = γ̄(st), strictly prefer φi = 0 or φi = 1. We conclude

that there is no scope for (nondegenerate) mixed best responses.

B.3 Proof of Proposition 2

The proof proceeds by a series of lemmas. To simplify notation, we henceforth drop (λt, Ft) as argu-

ments of x, θ̂ and θ̄ where no confusion arises. Furthermore, we use Ṽ I(θ, θ̂, x) ≡ V I(θh(s(θ̂, x)), x) =

(1−θh(s(θ̂, x)))u(x) to denote insider’s expected indirect utility, where s is as given by Proposition 1.

Lemma B.1. x is weakly increasing in θt.

Proof. Suppose to the contrary that x(θ′′) < x(θ′) for θ′ < θ′′. Let x′ ≡ x(θ′), x′′ ≡ x(θ′′), u′ ≡ u(x′),

u′′ ≡ u(x′′), h′ ≡ h(s(θ̂(x′), x′)), and h′′ ≡ h(s(θ̂(x′′), x′′)). Optimality of x′ then requires that

Ṽ I(θ′, θ̂(x′′), x′′) ≤ Ṽ I(θ′, θ̂(x′), x′), implying u′h′ − u′′h′′ ≤ (u′ − u′′)/θ′ < (u′ − u′′)/θ′′, where the

last inequality follows from θ′ < θ′′ and u′ < u′′. Hence, Ṽ I(θ′, θ̂(x′′), x′′) ≤ Ṽ I(θ′, θ̂(x′), x′) implies

that Ṽ I(θ′′, θ̂(x′′), x′′) < Ṽ I(θ′′, θ̂(x′), x′), contradicting optimality of x′′ for θ′′.

Lemma B.2. Suppose x is discontinuous at θ′, and define x− ≡ limε↑0 x(θ′+ε) and x+ ≡ limε↓0 x(θ′+

ε). Then for any x′ ∈ (x−, x+), the only beliefs consistent with the D1 criterion are θ̂(x′) = θ′.

Proof. Let θ′′ > θ′, and let x′′ ≡ x(θ′′). Optimality of x′′ then requires that Ṽ I(θ′′, θ̂(x′′), x′′) ≥
Ṽ I(θ′′, θ̂(x+), x+) and, thus for any θ̃,

Ṽ I(θ′′, θ̃, x′) ≥ Ṽ I(θ′′, θ̂(x′′), x′′) implies Ṽ I(θ′′, θ̃, x′) ≥ Ṽ I(θ′′, θ̂(x+), x+).
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Moreover, arguing as in the proof of Lemma B.1,

Ṽ I(θ′′, θ̃, x′) ≥ Ṽ I(θ′′, θ̂(x+), x+) implies Ṽ I(θ′, θ̃, x′) > Ṽ I(θ′, θ̂(x+), x+).

Hence, if Ṽ I(θ′′, θ̃, x′) ≥ Ṽ I(θ′′, θ̂(x+), x+) = V ∗(θ′′), then Ṽ I(θ′, θ̃, x′) > Ṽ I(θ′, θ̂(x+), x+) = V ∗(θ′).

Therefore, Dθ′′,x′ is a proper subset of Dθ′,x′ if θ′′ > θ′, ruling out θ̂(x′) > θ′ by the D1 criterion.7

A similar argument establishes that Dθ′′,x′ is a proper subset of Dθ′,x′ if θ′′ < θ′ and, thus, the D1

criterion requires that θ̂(x′) = θ′ for all x′ ∈ (x−, x+).

Lemma B.3. There exists θ̄t > 0, such that xt = λt for all θt ≤ θ̄t. Moreover, x(θ′′) > x(θ′) > λt+µ

for all θ′′ > θ′ > θ̄t and some µ > 0.

Proof. First, consider the existence of a connected pool at xt = λt. Because for θt = 0, xt = λt

dominates all xt > λt, we have that x(0) = λt. It follows that there exists a pool at xt = λt, because

otherwise θ̂(λt) = 0 and, therefore, p(·, s(θ̂(λt), λt)) = 0, contradicting optimality of x(θ) > λt for all

θ > 0. Moreover, by Lemma B.1, x is increasing, implying that any pool must be connected. This

proves the first part of the claim.

Now consider x(θ′′) > x(θ′) for all θ′′ > θ′ > θ̄t and suppose to the contrary that x(θ′′) ≤ x(θ′)

for some θ′′ > θ′. Since x is increasing, it follows that x(θ) = x+ for all θ ∈ [θ′, θ′′] and some

x+ > λt. W.l.o.g. assume that θ′ is the lowest state in this pool. Then Bayesian updating implies

that θ+ ≡ θ̂(x+) ≥ EFt{θt|θ′′ ≥ θt ≥ θ′} > θ′ and, therefore, Ṽ I(θ′, θ−, x+) > Ṽ I(θ′, θ+, x+) for

all θ− ≤ θ′. Hence, because θ′ prefers x+ over x(θ−), it must be that x(θ−) 6= x+ for all θ− ≤ θ′

and, hence, x(θ−) < x+ by Lemma B.1. Accordingly, let x− ≡ maxθ−≤θ′ x(θ−). Then from

continuity of Ṽ I and θ+ > θ′ it follows that there exists an off-equilibrium reform x′ ∈ (x−, x+) with

Ṽ I(θ′, θ′, x′) > Ṽ I(θ′, θ+, x+). Hence, to prevent θ′ from choosing x′ it must be that θ̂(λt, x
′, Ft) > θ′.

However, from Lemma B.2 we have that θ̂(x′) = θ′, a contradiction.

Finally, to see why there must be a jump-discontinuity at θ̄t note that Ṽ I(θ̄t,EFt{θt|θt ≤ θ̄t}, λt) =

Ṽ I(θ̄t, θ̄t, x(θ̄t)); otherwise, there necessarily exists a θ in the neighborhood of θ̄t with a profitable

deviation to either λt or x(θ̄t). From the continuity of Ṽ I and the non-marginal change in beliefs

from EFt{θt|θt ≤ θ̄t} to θ̄t it follows that x(θ̄t) > λt + µ for all λt and some µ > 0.

Lemma B.4. x is continuous and differentiable in θt on (θ̄t, 1].

Proof. Consider continuity first and suppose to the contrary that x has a discontinuity at θ′ ∈ (θ̄t, 1).

By Lemma B.1, x is monotonically increasing in θt. Hence, because x is defined on an interval, it

follows that for any discontinuity θ′, x− ≡ limε↑0 x(θ′) and x+ ≡ limε↓0 x(θ′) exist, and that x is

differentiable on (θ′ − ε, θ′) and (θ′, θ′ + ε) for some ε > 0. Moreover, from Lemmas B.2 and B.3 it

7The D1 criterion requires that beliefs are attributed to the state in which a deviation to x′ is attractive for the
largest set of possible inferences about the regime’s vulnerability. Formally, let V ∗(θ) ≡ E{V I(η, x∗(θ, λ))|θ} be the
insiders’ expected payoff in state θ under a candidate equilibrium x∗. Then the D1 criterion restricts beliefs for
off-equilibrium events x′ to states θ′ that maximizes Dθ′,x′ = {θ̂ : E{V I(η, x′)|θ′, s = s(θ̂, x′)} ≥ V ∗(θ′)} in the sense
that there is no θ′′ such that Dθ′,x′ is a proper subset of Dθ′′,x′ .
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follows that in equilibrium θ̂(x′) = θ′ for all x′ ∈ [x−, x+]. Hence, Ṽ I(θ′, θ′, x−) = Ṽ I(θ′, θ′, x+), since

otherwise there necessarily exists a θ in the neighborhood of θ′ with a profitable deviation to either x−

or x+. Accordingly, optimality of x(θ′) requires Ṽ I(θ′, θ′, x′) ≤ Ṽ I(θ′, θ′, x−) and, thus, Ṽ I(θ′, θ′, x−)

must be weakly decreasing in x. Therefore, ∂Ṽ I/∂θ̂t < 0 and limε′↓0 ∂θ̂(x
− − ε′)/∂xt > 0 (following

from Lemma B.3) imply that limε′↓0 ∂Ṽ
I(θ′, θ̂(x− − ε′), x− − ε′)/∂xt < 0. Hence, a profitable

deviation to x− − ε′ exists for some ε′ > 0, contradicting optimality of x(θ′).

We establish differentiability by applying the proof strategy for Proposition 2 in Mailath (1987).

Let g(θ, θ̂, x) ≡ Ṽ I(θ, θ̂, x)− Ṽ I(θ, θ′, x(θ′)), for a given θ′ > θ̄t, and let θ′′ > θ′. Then, optimality of

x(θ′) implies g(θ′, θ′′, x(θ′′)) ≤ 0, and optimality of x(θ′′) implies that g(θ′′, θ′′, x(θ′′)) ≥ 0. Letting

a = (αθ′ + (1− α)θ′′, θ′′, x(θ′′)), for some α ∈ [0, 1] this implies

0 ≥ g(θ′, θ′′, x(θ′′)) ≥ −g1(θ′, θ′′, x(θ′′))(θ′′ − θ′)− 1
2g11(a)(θ′′ − θ′)2,

where the second inequality follows from first-order Taylor expanding g(θ′′, θ′′, x(θ′′)) around

(θ′, θ′′, x(θ′′)) and rearranging the expanded terms using the latter optimality condition. Expanding

further g(θ′, θ′′, x(θ′′)) around (θ′, θ′, x(θ′)), using the mean value theorem on g1(θ′, θ′′, x(θ′′)), and

noting that g(θ′, θ′, x(θ′)) = g1(θ′, θ′, x(θ′)) = 0, these inequalities can be written as

0 ≥ g2(θ′, θ′, x(θ′)) +
x(θ′′)− x(θ′)

θ′′ − θ′
× [g3(θ′, θ′, x(θ′))

+ 1
2g33(b(β))(x(θ′′)− x(θ′)) + g23(b(β))(θ′′ − θ′)] + 1

2g22(b(β))(θ′′ − θ′)

≥ −[g12(b(β′)) + 1
2g11(a)](θ′′ − θ′)− g13(b(β′))(x(θ′′)− x(θ′)),

for b(β) = (θ′, βθ′ + (1− β)θ′′, βx(θ′) + (1− β)x(θ′′)) and some β, β′ ∈ [0, 1]. Because Ṽ I is twice

differentiable, all the derivatives of g are finite. Moreover, continuity of x implies that x(θ′′)→ x(θ′)

as θ′′ → θ′ and, therefore, for θ′′ → θ′,

0 ≥ g2(θ′, θ′, x(θ′)) + lim
θ′′→θ′

x(θ′′)− x(θ′)

θ′′ − θ′
g3(θ′, θ′, x(θ′)) ≥ 0.

By Lemma B.3, x and, hence, θ̂ are strictly increasing for all θ ≥ θ̄(λt, Ft). Arguing similarly as we

did to show continuity, optimality of x, therefore, requires that g3 = Ṽ I
3 (θ, θ, x) 6= 0 and, hence, the

limit of (x(θ′′)− x(θ′))/(θ′′ − θ′) is well defined, yielding

dx

dθ
= − Ṽ

I
2 (θ, θ, x)

Ṽ I
3 (θ, θ, x)

. (B.2)

Lemma B.5. x(θt) = ξ(θt) for all θt > θ̄t, where ξ is unique and ∂ξ/∂θt > 0.

Proof. From Lemma B.4 we have that ξ is differentiable, and by Lemma B.3, ∂ξ/∂θt > 0. We thus

only need to show that ξ is unique. By the proof to Lemma B.4, dx/dθt is pinned down by the
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partial differential equation (B.2), which must hold for all θt > θ̄t. Moreover, whenever θ̄t < 1, in

equilibrium θ̂(x(1)) = 1 and, therefore, it obviously must hold that x(1) = arg maxxt Ṽ
I(1, 1, xt),

providing a boundary condition for (B.2). Because Ṽ I is independent of (λt, Ft), it follows that x(θt)

is uniquely characterized by a function, i.e., ξ : θt 7→ xt, for all θt > θ̄t.

Lemma B.6. θ̄(λt, Ft) is unique.

Proof. Suppose to the contrary that θ̄(λt, Ft) is not unique. Then there exist θ̄′′ > θ̄′, defining two

distinct equilibria for a given λt. By Lemma B.5, there is a unique ξ(θ) characterizing reforms

outside the pool for both equilibria. Optimality for type θ ∈ (θ̄′, θ̄′′) then requires Ṽ I(θ, θ, ξ(θ)) ≥
Ṽ I(θ,EFt{θt|θt ≤ θ̄′}, λt) in the equilibrium defined by θ̄′, and Ṽ I(θ, θ, ξ(θ)) ≤ Ṽ I(θ,EFt{θt|θt ≤
θ̄′′}, λt) in the equilibrium defined by θ̄′′. However, Ṽ I(θ,EFt{θt|θt ≤ θ̄′}, λt) > Ṽ I(θ,EFt{θt|θt ≤
θ̄′′}, λt), a contradiction.

This establishes uniqueness of x(θt, λt, Ft), with all properties given by Lemmas B.3 and B.5,

and the corresponding beliefs θ̂(λt, xt, Ft) following from Lemma B.2 and Bayesian updating. Again,

for the purpose of clarity we have established this proposition by focusing on pure strategy equilibria.

In the following we outline how the proof generalizes to mixed strategy equilibria.

Replicating the proof of Lemma B.1, it is trivial to show that if Ṽ I(θ′, θ̂(x′), x′) = Ṽ I(θ′, θ̂(x′′), x′′),

then Ṽ I(θ′′, θ̂(x′), x′) < Ṽ I(θ′′, θ̂(x′′), x′′) for all θ′ < θ′′ and x′ < x′′. It follows that (i) supports,

X (θ), are non-overlapping, and (ii) minX (θ′′) ≥ maxX (θ′). Moreover, noting that x̃(θ) ≡ maxX (θ)

has a jump-discontinuity if and only if type θ mixes in a non-degenerate way, (ii) further implies that

there can be only finitely many types that mix on the closed interval [0, 1]. The logic of Lemmas B.2,

B.3, and B.4 then apply, ruling out any jumps of x̃ on [θ̄(λt, Ft), 1]. This leads to the conclusion

that at most a mass zero of types (i.e., θt = θ̄(λt, Ft)) could possibly mix in any equilibrium (with

no impact on θ̂) and, thus, there is no need to consider any non-degenerate mixed strategies.

B.4 Proof of Proposition 3

Case (i) follows trivial, as here the state is revealed through insiders’ reforms. Cases (ii) and (iii) are

a straightforward application of Bayes’ law. In particular, for any ϑ ≤ θ̄t, we get

F̃t(ϑ|ηt = 1, xt = λt) =

∫ ϑ
0 p(θ, s)dFt(θ)∫ θ̄t
0 p(θ, s)dFt(θ)

=
Ft(ϑ)

Ft(θ̄t)

M1
t (ϑ)

M1
t (θ̄t)

and

F̃t(ϑ|ηt = 0, xt = λt) =

∫ ϑ
0 (1− p(θ, st))dFt(θ)∫ θ̄t
0 (1− p(θ, st))dFt(θ)

=
Ft(ϑ)

Ft(θ̄t)
· 1− h(st)M

1
t (ϑ)

1− h(st)M1
t (θ̄t)

.

Note that by letting
∫

dF denote the Lebesgue integral, the derivation applies for arbitrary, not

necessarily continuous, probability measures Ft.
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B.5 Derivation of Equations (11) and (12)

In case (i), F̂t|(xt > λt) is a single mass point on θt, so trivially µ̃t = θt and σ̃2
t = 0.

Consider, case (ii) next. From Proposition 3, we have that for all θ ≤ θ̄t,

dF̃t(θ) =
1

Ft(θ̄t)M1
t (θ̄t)

d
(
Ft(θ)M

1
t (θ)

)
where, using the definition of M1

t ,

d
(
Ft(θ)M

1
t (θ)

)
= d

∫ θ

0
ϑdFt(ϑ) = θdFt(θ).

Computing the i-the raw moment of F̃t, we have

EF̃t{θ
i|θ ≤ θ̄t} =

1

Ft(θ̄t)M1
t (θ̄t)

∫ θ̄t

0
θi+1dFt(θ) =

M i+1
t (θ̄)

M1
t (θ̄)

and, accordingly,

µ̃t|(ηt = 1, xt = λt) =
M2
t (θ̄)

M1
t (θ̄)

σ̃2
t |(ηt = 1, xt = λt) =

M3
t (θ̄)

M1
t (θ̄)

− µ̃2
t .

Case (iii) is analyzed analogously. For all θ ≤ θ̄t, the probability measure is given by

dF̃t(θ) =
1

Ft(θ̄t)
(
1− h(st)M1

t (θ̄t)
)d
(
Ft(θ)

(
1− h(st)M

1
t (θ)

))
where

d
(
Ft(θ)

(
1− h(st)M

1
t (θ)

))
= dFt(θ)− h(st)d

∫ θ

0
ϑdFt(ϑ) = (1− θh(st))dFt(θ).

The i-th raw moment is thus given by

EF̃t{θ
i|θ ≤ θ̄t} =

1

Ft(θ̄t)
(
1− h(st)M1

t (θ̄t)
) ∫ θ̄t

0
(θi − θi+1h(st))dFt(θ)

=
M i
t (θ̄t)− h(st)M

i+1
t (θ̄t)

1− h(st)M1
t (θ̄t)
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and, hence,

µ̃t|(ηt = 0, xt = λt) =
M1
t (θ̄t)− h(st)M

2
t (θ̄t)

1− h(st)M1
t (θ̄t)

σ̃2
t |(ηt = 0, xt = λt) =

M2
t (θ̄t)− h(st)M

3
t (θ̄t)

1− h(st)M1
t (θ̄t)

− µ̃2
t .

B.6 Proof of Proposition 4

The proposition is a straightforward corollary to Propositions 1–3: From Proposition 1 and 2, there

exists a unique mapping from St to {{φit}i∈[0,1], st, xt}, which further implies a unique (stochastic)

mapping from St to ηt. Proposition 3, in turn, implies that there exists a unique mapping from

(St, xt, ηt) to St+1. As St is purely-backward looking, we conclude that for any S0 there exists a

unique stochastic equilibrium process.

B.7 Proof of Proposition 5

Given Pr(θt = θt−1) → 1, we have that θ0 = θ1 = · · · ≡ θ almost surely. We prove two versions

of the proposition. Our preferred version amounts to the case where θ is fixed across time, but is

unobserved by the statistician. To estimate transition hazards, the statistician treats θ as hidden

state and refines his estimate for θ based on the realizations of (xt, st, ηt). Accordingly, in our

preferred version of the proposition, the statistical probability measure at date t coincides with

outsiders’ prior Ft. However, the proposition also holds conditional on a given realization θ0 that is

known to the statistician. To show this, we first prove the result for a fixed θ0, and then derive the

more general result where θ0 is treated as hidden state as a corollary.

Case 1 (fixed θ0). Fix some (θ0, λ0, F0), and let θ̄0 define the pooling threshold as in Proposition 2.

We tacitly assume θ0 < θ̄0, so that there is indeed no reform at t = 0.

Consider any t > 0 and suppose there was no transition until until t−1. From Pr(θt = θt−1)→ 1,

Ft(θ̄t−1) = F̃t−1(θ̄t−1). Proposition 3 then implies

Ft(θ̄t−1) = F̃t−1(θ̄t−1) = 1, (B.3)

so that

M1
t (θ̄t−1) = EFt{θ|θ ≤ θ̄t−1} = EFt{θ}. (B.4)

Moreover, from (11),

EFt{θ} =
M2
t−1(θ̄t−1)

M1
t−1(θ̄t−1)

. (B.5)

Combining (B.4) and (B.5) and noting that VarFt [θ|θ ≤ ϑ] = M2
t (ϑ) − [M1

t (ϑ)]2 > 0 implies

M2
t (ϑ) > [M1

t (ϑ)]2, we have

10



M1
t (θ̄t−1) =

M1
t−1(θ̄t−1)− h(st−1)M2

t−1(θ̄t−1)

1− h(st−1)M1
t−1(θ̄t−1)

< M1
t−1(θ̄t−1). (B.6)

Further noting that from (B.3), M1
t (θ̄t−1) = M1

t (θ̄t) for all θ̄t ≥ θ̄t−1, we conclude that

hazrev
t = θ0h(s(M1

t (θ̄t), λ0)) < θ0h(s(M1
t−1(θ̄t−1), λ0)) = hazrev

t−1 (B.7)

if θ̄t ≥ θ̄t−1.

To complete the proof of the first step, we need to show that θ̄t ≥ θ̄t−1, implying that (B.7)

indeed holds, and further implying that

hazref
t ≤ Pr(θ0 ≥ θ̄t) = 0.

To see that this is true, note that from (B.7),

Ṽ I(θ̄t−1, θ̂(λ0, λ0, Ft), λ) > Ṽ I(θ̄t−1, θ̂(λ0, λ0, Ft−1), λ),

implying that the right-hand side of condition (9) is increased from t to t− 1 at θ̄ = θ̄t−1. As the

left-hand side of (9) is constant in t, it thus must hold that θ̄t > θ̄t−1.

Case 2 (θ0 is a hidden state) Now suppose that the statistician does not know the realization

of θ0. Instead they filter through the realized history of the economy, summarized by (xτ , sτ , ητ )τ<t,

to compute a probability measure for θ0 and the corresponding transition hazards. As the realized

history coincides with outsiders’ information set, the statistical probability measure is simply given

by Ft. Specifically, transition hazards at date t are given by

hazref
t =

∫ 1

θ̄t

(1− θh(s(θ, ξ(θ)))) dFt(θ)

hazrev
t =

∫ θ̄t

0
θh(s(M1

t (θ̄t), λ0)) dFt(θ) +

∫ 1

θ̄t

θh(s(θ, ξ(θ))) dFt(θ).

Step 1 immediately implies that for all t > 0, in the absence of any prior transition,

hazref
t = 0

and

hazrev
t =

∫ θ̄t

0
θh(s(M1

t (θ̄t), λ0)) dFt(θ)

= h(s(M1
t (θ̄t), λ0)) ·M1

t (θ̄t).
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To conclude the proof, note that from above, M1
t (θ̄t) < M1

t−1(θ̄t−1), so that hazrev
t is again strictly

decreasing in t as both factors are decreasing in M1
t (θ̄t). Intuitively, the first factor captures the

decline in the revolt-hazard due to outsiders perceiving the regime as more stable (leading to a fall

in st over time). The second term captures the uncertainty by the statistician, who similarly to

outsiders now also infers that the regime is more stable over time, further reducing the revolt-hazard

over time compared to the fixed θ0-case above.

B.8 Proof of Proposition 6

Bounding reforms Insiders’ optimality condition implies that ξ(θ̄t) is effective in reducing

revolutionary pressure; i.e.,

s(θ̄t, ξ(θ̄t)) < s(M1
t (θ̄t), λt). (B.8)

From the proof of Proposition 1, we can write s(θ̂, x) = s̄(ω) with ω = (1 − x)θ̂ and s̄′ > 0.

Accordingly, (B.8) implies

(1− ξ(θ̄t))θ̄t < (1− λt)M1
t (θ̄t),

and so

xt ≥ ξ(θ̄t) > 1− (1− λt)
M1
t (θ̄t)

θ̄t
≡ λ̄ref

t .

Bounding revolts From (7) and (8), st solves the fixed-point equation

st = ωtψ(st) (B.9)

with ωt = (1− xt)θ̂t. Let ω′ > ω and, correspondingly, let s′ > s as in (B.9). Then

s = ωψ (s) < ωψ(s′) =
ω

ω′
s′. (B.10)

Evaluating (B.10) for ω = (1− λt)M1
t (θ̄t) and ω′ = (1− λt)θ̄t > ω yields

s(M1
t (θ̄t), λt) <

M1
t (θ̄t)

θ̄t
s(θ̄t, λt). (B.11)

Similarly, evaluating (B.10) for ω = (1− λt)θ̄t and ω′ = 1, we have

s(θ̄t, λt) < (1− λt)θ̄ts(1, 0) ≤ (1− λt)θ̄t. (B.12)

Combining (B.11) and (B.12), and recalling that optimization by insiders requires that st is weakly

below s(M1
t (θ̄t), λt), yields

st ≤ s(M1
t (θ̄t), λt) < (1− λt)M1

t (θ̄t) ≡ λ̄rev
t .
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B.9 Proof of Proposition 7

Differentiating Ṽ I with respect to its third argument, we obtain

lim
x→1

Ṽ I
3 (1, 1, x) = −αu − lim

x→1
αhs(1, x)αh−1s2(1, x),

or, substituting for s2 as computed in the proof to Proposition 1 and observing that x→ 1 implies

s(1, x)→ 0,

lim
x→1

Ṽ I
3 (1, 1, x) = −αu + lim

x→1
αhs(1, x)2αh−1 1 + αu

1− (1 + αu)αh
1−x

s(1,x)1−αh

. (B.13)

Using L’Hospital’s Rule, we get after some algebra

lim
x→1

1− x
s(1, x)1−αh

=
1

(1− αh)(1 + αu)
− αh

1− αh
lim
x→1

1− x
s(1, x)1−αh

,

which has a unique fixed point at

lim
x→1

1− x
s(1, x)1−αh

=
1

1 + αu
.

Substituting back into (B.13), we have that ξ(1) = 1 if and only if

lim
x→1

s(1, x)2αh−1 ≥ αu
1 + αu

1− αh
αh

.

Note that the right side of the inequality is strictly between zero and unity, as 0 < αu ≤ αh given

the properties imposed on u and h. The left side of the inequality goes to zero for all αh > .5, goes

to ∞ for all αh < .5, and is constant at unity for αh = .5. We conclude that ξ(1) = 1 if and only if

αh ≤ .5, implying that a regime with λ→ 1 emerges (almost surely) under the same conditions (as

G has full support on [0, 1]).

C Numerical Implementation

This section describes the algorithm used to solve and estimate the model.

Solution to the model We first describe how to solve the model for a given parametrization ω.

The solution is simplified by the block-recursivity of the overlapping generations structure, which

let’s us break down the algorithm into three successive steps.

Step 1 (coordination problem). We solve the functional fixed-point (8) for s : (θ̂, x) 7→ s using a

spline collocation. Noting that (1− x)γ̄(θ̂, s) = yh(s)u(s) with y = (1− x)θ̂, we can reduce s to a

univariate function s̄ : y 7→ s. We parametrize s̄ using a septic spline with 34 interior break points,

with parameters chosen to solve (8) on a fine grid on [0, 1]. The procedure gives a very accurate

13



approximation to s (evaluating (8) on an equally-spaced grid with 1000 points on [0, 1], yields a

maximal error of less than 5 · 10−7).

Step 2 (signaling problem). The solution to the signaling problem characterized by Proposition 2

breaks down in to two substeps. (i) Given s, we can solve for ξ using a standard solver for ordinary

differential equations. (ii) Given s and ξ, θ̄ can be solved using a standard bisection method on [0, 1].

Step 3 (stationary distribution). We approximate the stationary distribution on a (Nλ×Nµ×Nσ)-

point grid for (λ, µ, σ) with Nλ = 21, Nµ = 20, Nσ = 20 (see the main body of the paper for more

details). The laws of motion are given by (2), (13) and (14), with

M i
t (ϑ) = B(ϑ, at + i, bt)/B(ϑ, a, b)

where B is the incomplete Beta function with shape parameters chosen so that the first two moments

of the corresponding Beta distribution coincide with µ and σ2; i.e.,

at = µt

(
µt(1− µt)

σ2
t

− 1

)
bt = (1− µt)

(
µt(1− µt)

σ2
t

− 1

)
. (C.1)

To compute the transition matrix Q(λt+1, µt+1, σt+1|λt, µt, σt), we first solve the generation game

conditional on (θt, λt, µt, σt) and integrate out θt using Ft as probability measure (see Footnote 17 for

details). For each (λt+1, µt+1, σt+1), we then discretize the resulting transition probabilities to the

eight adjacent grid-points, {λi, λi+i}×{µi, µi+1}×{σi, σi+1}, assigning probabilities proportionately

to their inverse Euclidean distance to the respective corners of the cube. Once we have Q, we

first verify that there exist a single recurrent class, consisting of 3322 states at our estimate (the

remainder 5078 states are not reached along the equilibrium path). Finally, we iterate on Q until

convergence, yielding the unique stationary distribution.

On a Thinkpad X230 with a i5-3230M, the whole process takes about 5 seconds to complete.

Calibration We use a combination of global and local minimization tools to solve (15). Specifically,

we first use a particle swarm algorithm with 20 chains of 16 particles each to conduct a preliminary

global search. The particles are initialized using scrambled Sobol quasi-random numbers, and evolve

completely independent across the 20 chains. After running the particle swarm algorithm for up to

200 iterations, we then run 20 local optimizer, initialized at the 20 minima attained across the 16

particles by each of the 20 chains. Our estimator is the minimum across the 20 chains.

The process converged to the exact same estimate for the top 9 out of 20 chains. On two

Xeon E5-2630 v4 processors (with 20 physical cores), the whole calibration took about 4.5 hours to

complete.
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D Accurateness of Belief Approximation

For the quantitative exploration of the model, we track outsiders’ beliefs over time by approximating

the one-step ahead projection from the posterior F̃t (which we compute exactly as in Proposition 3)

to the prior Ft+1 using a Beta distribution with moments matching (13) and (14). In this section,

we explore the accurateness of this approximation. Overall, we find that the approximation of Ft+1

is remarkably exact, tracing the true prior almost perfectly.

D.1 Beliefs after reforms

After an attempted or successful reform (xt > λt, ηt ∈ {0, 1}), the current state of the regime is fully

revealed. Accordingly, the exact prior at t+ 1 is truncated normal with mean ρθt + µε and variance

σ2
ε . For any interior ϑ ∈ (0, 1), the pdf is given by

ft+1(ϑ) = φρθt+µε,σ2
ε
(ϑ),

where φµ,σ2 denotes the density of a (µ, σ2)-normal distribution. At the boundaries, ϑ ∈ {0, 1}, Ft+1

has mass points corresponding to the tails of ft+1.

By contrast, the Beta approximation is given by

fapprox
t+1 (ϑ) = βρθt+µε,σ2

ε
(ϑ),

where βµ,σ2 denotes the density of a Beta distribution with mean µ and variance σ2 (implemented

by shape parameters as in (C.1)).

Panel (a) of Figure D.1 compares ft+1 and fapprox
t+1 for three different values of θt. Specifically,

the values of θt are set to the 10th, 50th and 90th percentile of the distribution over θt conditional

on there being a reform at t. In all three cases, the approximation traces the exact shape of ft+1

almost perfectly, despite being marginally skewed for the 90th percentile of θt. Moreover, because

fapprox
t+1 integrates to unity on (0, 1), the close fit in the interior also implies that ft+1 integrates to

approximately unity on (0, 1), so that that the residual mass distributed as mass points on {0, 1} is

negligible.

D.2 Beliefs after revolts against pooling regimes

Consider next the case where the regime does not attempt any reform and is overthrown by a revolt.

From Proposition 3, the posterior density f̃t = F̃ ′ is given by

f̃ t(ϑ) =
1

Ft(θ̄t)

ϑF ′t(ϑ)

M1
t (θ̄t)

.
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(a) Beliefs after reforms
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(b) Beliefs after revolts against pooling regimes
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(c) Beliefs after no transition

0 0.1 0.2 0.3
0

2

4

6

8

10

µt = 10%

0.2 0.4 0.6
0

2

4

6

8

µt = 50%

0.6 0.65 0.7 0.75
0

10

20

µt = 90%

Figure D.1: Accurateness of belief approximation. Black dotted lines are exact prior beliefs computed as in (10).
Solid red lines approximate the one-step ahead projection using Beta-distributions with their first two moments
matching (13) and (14). Top panel compares ft+1 with fapprox

t+1 for xt > λt, ηt ∈ {0, 1} and θt set to the 10th, 50th and
90th percentile of Pt(θt|xt > λt). Middle and bottom panels compare ft+1 with fapprox

t+1 for xt = λt, ηt = 1 (middle
panel) and ηt = 1 (bottom panel), µt set to the 10th, 50th and 90th percentile of Pt(µt|xt = λt, ηt), and λt and σt are
set to the conditional (on µt) medians.
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Substituting f̃t into (10), we obtain ft+1, which for any interior ϑ ∈ (0, 1) is given by

ft+1(ϑ) =
1

Ft(θ̄t)

1

M1
t (θ̄t)

∫ ∞
−∞

φµε,σ2
ε
(ϑ− ρθ)θft(θ) dθ

where ft is the prior density at t. The Beta approximation is given by

fapprox
t+1 (ϑ) = βρµ̃t+µε,ρ2σ̃2

t+σ2
ε
(ϑ),

with µ̃t and σ̃2
t as in (11) and (12).

Panel (b) of Figure D.1 compares ft+1 with its approximation fapprox
t+1 for three different states

St. Specifically, we set µt to its 10th, 50th and 90th percentile conditional there being no reform

and a successful revolt at t (xt = λt, ηt = 1). The value of σ2
t is fixed at the associated median

(conditional on the corresponding value for µt). Again, the approximation closely tracks the exact

density ft+1 in the interior, and there is no significant mass on {0, 1}.

D.3 Beliefs after no transition

Finally, consider the case of no transition. From Proposition 3, the posterior density is given by

f̃ t(ϑ) =
F ′t(ϑ)

Ft(θ̄t)
· 1− h(st)ϑ

1− h(st)M1
t (θ̄t)

,

yielding

ft+1(ϑ) =
1

Ft(θ̄t)
· 1

1− h(st)M1
t (θ̄t)

∫ ∞
−∞

φµε,σ2
ε
(ϑ− ρθ)ft(θ)(1− h(st)θ) dθ

for any interior ϑ ∈ (0, 1). The corresponding Beta approximation is given by

fapprox
t+1 (ϑ) = βρµ̃t+µε,ρ2σ̃2

t+σ2
ε
(ϑ),

with µ̃t and σ̃2
t as in (11) and (12).

Panel (c) of Figure D.1 compares ft+1 with its approximation fapprox
t+1 for three different states

St. Specifically, we set µt to its 10th, 50th and 90th percentile conditional there being no transition

at t (xt = λt, ηt = 0). The values of σ2
t and λt (needed to compute h(st)) is fixed at their associated

median (conditional on the corresponding value for µt). Again, the approximation closely tracks the

exact density ft+1 in the interior, and there is no significant mass on {0, 1}.
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E Comparative Statics in the Generation Game

Comparative statics in λ Here we explore how an increase in the regime size λ affects the

policy mappings depicted in Figures 5 and 6. The primary implication of an increase in λ is a

reduction in potential supporters of a revolt along the extensive margin. Accordingly, absent reforms,

the regime is more stable (seen in the right panel of Figure E.1), which manifests itself in a reduced

inclination to implement reforms (θ̄ is higher, see left panel of Figure E.1). A second order implication

then is that for increased values for θ̄, the pooling belief θ̂pool increases as well (seen in the left

panel of Figure E.2), which in turn increases the off-equilibrium support for revolts conditional on

x ∈ (λ, ξ(θ̄)) as seen in the right panel of Figure E.2.

0 θ̄t 1

λt

ξ(θ̄t)
1

θt

xt
Equilibrium reforms

0 θ̄t 1

1
2

θt

pt Revolt hazard

Figure E.1: Effect of λ on equilibrium reforms and implied probability to be overthrown. Black lines show mappings
for λ = .1, red lines show mappings for λ = .5.

0 λt ξ(θ̄t)1

θ̂poolt

θ̄t

1

xt

θ̂t
Equilibrium beliefs

0 λt ξ(θ̄t)1

s(θ̂poolt , λt)

1

xt

st
Size of revolt

Figure E.2: Effect of λ on equilibrium beliefs and implied mass of insurgents. Black lines show mappings for λ = .1,
red lines show mappings for λ = .5.
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Comparative statics in F To demonstrate the effect of outsiders’ beliefs on F on the policy

mappings, suppose F is parametrized by a Beta distribution with moments (µ, σ2). Note that the

case where F is uniform is a special of the Beta distribution where µ = .5 and σ2 = 1/12. We

compare this benchmark case, depicted in the main text with the case where µ = .35 and σ2 remains

fixed at the uniform value of 1/12. The results are shown in Figures E.3 and E.4. It can be seen

that the decline in outsiders’ prior expectation (seen in the left panel of Figure E.4) leads again to a

drop in revolt hazard (right panels of Figures E.3 and E.4), which makes insiders less inclined to

reform (θ̄ is higher, see left panel of Figure E.3).

0 θ̄t 1

λt

ξ(θ̄t)
1

θt

xt
Equilibrium reforms

0 θ̄t 1

1
2

θt

pt Revolt hazard

Figure E.3: Effect of µ on equilibrium reforms and implied probability to be overthrown. Black lines show mappings
for µ = .5, red lines show mappings for µ = .35.

0 λt ξ(θ̄t)1

θ̂poolt

θ̄t

1

xt

θ̂t
Equilibrium beliefs

0 λt ξ(θ̄t)1

s(θ̂poolt , λt)

1

xt

st
Size of revolt

Figure E.4: Effect of µ on equilibrium beliefs and implied mass of insurgents. Black lines show mappings for µ = .5,
red lines show mappings for µ = .35.
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Comparison with symmetric information case Finally, we compare the equilibrium reform

mapping with the case where outsiders fully observe θt. Full information implies strictly more

reforms by insiders compared to the asymmetric information case (see left panel of Figure E.5).

This is because asymmetric information essentially imposes an extra cost on reforms associated

with revealing that the regime is of a higher type θt. On the one hand, this manifests itself in

a large pool of regimes not conducting any reform, even though reforms are optimal under full

information. On the other hand, since any marginal increase in reforms also implies a marginal

change in outsiders’ beliefs dθ̂/dx, the reform schedule itself (conditionally on conducting reforms)

is biased downwards under asymmetric information. As a consequence, revolts tend to be less likely

under symmetric information, even though the revolt hazard may point-wise exceed the one under

asymmetric information for certain values of θ.8 Integrating over realizations of θ (using the uniform

prior as probability measure), yields an average revolt hazard of under symmetric information of

5.64 percent as opposed to 13.67 percent under asymmetric information.

0 θ̄t 1

λt

ξ(θ̄t)
1

θt

xt
Equilibrium reforms

0 θ̄t 1

1
2

θt

pt Revolt hazard

Figure E.5: Equilibrium reforms and implied probability to be overthrown under symmetric information. Black lines
show equilibrium mappings with asymmetric information, red lines show mappings under full information.
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